
Package: demystas (via r-universe)
August 31, 2024

Title Demystifying Automation on Simple Tasks

Version 1.3.11

Date 2018-11-14

Description There are a myriad of daily tasks which seem simple, but
yet hide complex computational requirements. These are the kind
of challenges that we encounter that are not entirely part of
our main objective, but need to be overcome nonetheless. These
include conducting complicated string searches, querying
spatial information and sometimes just organizing messy data.
This package aims to offer useful functions for data analysts
which might help in making these ``on-the-fly'' tasks lighter and
more automated.

Depends R(>= 2.10.0)

License MIT + file LICENSE

Encoding UTF-8

LazyData false

RoxygenNote 6.1.0

Imports doParallel, snow, foreach, doSNOW, utils, sp, raster,
geosphere, methods, parallel, stats

ValidationKey 23400039

Suggests knitr, rmarkdown

VignetteBuilder knitr

Repository https://pik-piam.r-universe.dev

RemoteUrl https://github.com/pik-piam/demystas

RemoteRef HEAD

RemoteSha 734c76db6231d55b2140d801186d3a547e9548e8

Contents
demystas-package . 2

1

2 coords2spi

coords2spi . 2
greps . 3
grepsAbb . 5
grepsParallel . 5
spNearest . 7
vectorEnum . 8

Index 9

demystas-package Demystifying Automation on Simple Tasks (demystas)

Description

There are a myriad of daily tasks which seem simple, but yet hide complex computational re-
quirements. These are the kind of challenges that we encounter that are not entirely part of our
main objective, but need to be overcome nonetheless. These include conducting complicated string
searches, querying spatial information and sometimes just organizing messy data.

Details

This package aims to offer useful functions for data analysts which might help in making these
"on-the-fly" tasks lighter and more automated.

coords2spi Convert coordinates to spatial information

Description

Wrapper function for ‘sp::over‘ in overlaying points over polygons to retrieve relevant intersection
information.

Usage

coords2spi(points, global)

Arguments

points a data frame with two columns of coordinates, or a Spatial object listed here
under "x" in showMethods(sp::over). These represent points to be mapped onto
polygon(s). Coordinates in ‘points‘ should be in the same column order as those
in ‘global‘

global an object onto which ‘points‘ is mapped, possible classes corresponding to
‘points‘ listed under "y" in showMethods(sp::over). If ‘points‘ is a data frame,
it will be converted into a SpatialPoints object.

greps 3

Value

a data frame corresponding to the coordinates in ‘points‘ mapped onto ‘global‘ with the attributes
of ‘global‘

Author(s)

Atreya Shankar

See Also

over

Examples

Not run:

require(rworldmap)
test <- demystas::coords2spi(as.data.frame(cbind(60,50)), getMap(resolution="low"))

End(Not run)

greps Sequential pairwise grep-style matching

Description

Sequentially performs a two-way grep-style analysis on two character vectors. Calculates pairwise
matching scores based on a rigid customized routine and returns matching strings ranked from best
to worst. The user is able to influence the algorithm by tweaking matching parameters.

Usage

greps(x, y, sepx = "\\.", sepy = "\\.", limitChar = 0,
limitWord = 0, booster = 0.8, wordIgnore = NULL,
checkBoth = TRUE, ignore.case = TRUE)

Arguments

x a character vector containing elements to be considered in pairwise grep-analysis.
Words are separated by ‘sepx‘.

y a character vector containing elements to be considered in pairwise grep-analysis.
Words are separated by ‘sepy‘.

sepx a regex-style expression which indicates how words are separated in ‘x‘. If ‘x‘ is
already a final vector and does not need to be segmented, input ‘sepx = NULL‘.
Defaults to "\\."

4 greps

sepy a regex-style expression which indicates how words are separated in ‘y‘. If ‘y‘ is
already a final vector and does not need to be segmented, input ‘sepy = NULL‘.
Defaults to "\\."

limitChar a numerical value from 0 to 1 which provides a lower proportional bound for a
word-to-word match to be considered significant. If the user prioritizes loosely
matched words, one can leave this value low such as 0.1. Alternatively, if the
end-user prioritizes strongly matched individual words, ‘limitChar‘ can be in-
creased to a value of say, 0.7. Defaults to 0.

limitWord a numerical value greater than or equal to 0 which provides a proportional filter
for significant overall characters matched. Defaults to 0.

booster a numerical value between 0 to 1 which provides a boost to the matching score
of exceptionally well-matched words. For meaningful results, its value should
be greater than ‘limitWord‘. Defaults to 0.8.

wordIgnore a character vector which should be ignored while searching for matches. Exam-
ples could be redundant characters such as "the" or "of". Defaults to NULL.

checkBoth a logical which indicates whether both left and right grep analyses should be
conducted (TRUE), or if only a left grep analysis is necessary (FALSE). Defaults
to TRUE.

ignore.case a logical which indicates if cases should be ignored when matching. Defaults to
TRUE.

Value

a list containing two matrices. The first "result" matrix has a total number of rows equal to the
length of vector x. The first column contains a repeat of vector ‘x‘ and the corresponding columns
contain ranked ‘y‘ vector matches to the corresponding rows. The matches are ranked from best
to worst as column number increases. The second "rank" matrix contains a matrix with equivalent
dimension as the first matrix. Instead of containing the matches from ‘y‘, this matrix contains the
matching scores of the respective components from the first matrix. A ranking score of 99 implies
a perfect match. Perfect matches are isolated for each row.

Author(s)

Atreya Shankar

Examples

Not run:

x <- c("foo.test.xyz", "baz.foosh", "bat")
y <- c("ba","foosba.asd", "bats.at", "foos", "gams.asd")
test <- demystas::greps(x, y)

End(Not run)

grepsAbb 5

grepsAbb Sequential abbreviation mapping

Description

Sequentially maps abbreviations onto complete words and returns a matrix of valid possibilities.

Usage

grepsAbb(x, y)

Arguments

x a character vector containing abbreviations.

y a character vector containing whole words that could correspond to abbrevia-
tions.

Value

a matrix with total number of rows equal to the length of vector ‘x‘. The first column is a repeat of
vector ‘x‘. Further columns represent matched possible ‘y‘ vector components.

Author(s)

Atreya Shankar

Examples

Not run:

x <- c("BLG", "BLD", "LAT", "EMM")
y <- c("Boulder","Latino", "Eminem", "Emmys", "Building")
test <- demystas::grepsAbb(x, y)

End(Not run)

grepsParallel Parallel pairwise grep-style matching

Description

Performs a two-way grep-style analysis on two character vectors using parallel computation. Cal-
culates pairwise matching scores based on a rigid customized routine and returns matching strings
ranked from best to worst. The user is able to influence the algorithm by tweaking matching param-
eters.

6 grepsParallel

Usage

grepsParallel(x, y, noCores, sepx = "\\.", sepy = "\\.",
limitChar = 0, limitWord = 0, booster = 0.8, wordIgnore = NULL,
checkBoth = TRUE, ignore.case = TRUE)

Arguments

x a character vector containing elements to be considered in pairwise grep-analysis.
Words are separated by ‘sepx‘.

y a character vector containing elements to be considered in pairwise grep-analysis.
Words are separated by ‘sepy‘.

noCores is a numerical value specifying the number of cores to be used for parallel com-
putation.

sepx a regex-style expression which indicates how words are separated in ‘x‘. If ‘x‘ is
already a final vector and does not need to be segmented, input ‘sepx = NULL‘.
Defaults to "\\."

sepy a regex-style expression which indicates how words are separated in ‘y‘. If ‘y‘ is
already a final vector and does not need to be segmented, input ‘sepy = NULL‘.
Defaults to "\\."

limitChar a numerical value from 0 to 1 which provides a lower proportional bound for a
word-to-word match to be considered significant. If the user prioritizes loosely
matched words, one can leave this value low such as 0.1. Alternatively, if the
end-user prioritizes strongly matched individual words, ‘limitChar‘ can be in-
creased to a value of say, 0.7. Defaults to 0.

limitWord a numerical value greater than or equal to 0 which provides a proportional filter
for significant overall characters matched. Defaults to 0.

booster a numerical value between 0 to 1 which provides a boost to the matching score
of exceptionally well-matched words. For meaningful results, its value should
be greater than ‘limitWord‘. Defaults to 0.8.

wordIgnore a character vector which should be ignored while searching for matches. Exam-
ples could be redundant characters such as "the" or "of". Defaults to NULL.

checkBoth a logical which indicates whether both left and right grep analyses should be
conducted (TRUE), or if only a left grep analysis is necessary (FALSE). Defaults
to TRUE.

ignore.case a logical which indicates if cases should be ignored when matching. Defaults to
TRUE.

Value

a list containing two matrices. The first "result" matrix has a total number of rows equal to the
length of vector x. The first column contains a repeat of vector ‘x‘ and the corresponding columns
contain ranked ‘y‘ vector matches to the corresponding rows. The matches are ranked from best
to worst as column number increases. The second "rank" matrix contains a matrix with equivalent
dimension as the first matrix. Instead of containing the matches from ‘y‘, this matrix contains the
matching scores of the respective components from the first matrix. A ranking score of 99 implies
a perfect match. Perfect matches are isolated for each row.

spNearest 7

Author(s)

Atreya Shankar

Examples

Not run:

x <- c("foo.test.xyz", "baz.foosh", "bat")
y <- c("ba","foosba.asd", "bats.at", "foos", "gams.asd")
test <- demystas::grepsParallel(x, y, 2)

End(Not run)

spNearest Detect nearest polygon (country) to point(s)

Description

Finds nearest polygon (country) to point(s), useful for cases where the ‘sp::over‘ function yields NA
results. Should be used with unprojected coordinates íe. lon/lat, ideally on the WGS84 ellipsoid

Usage

spNearest(points, global, inc = 100)

Arguments

points a data frame with two columns of coordinates (first longitude, then latitude), or
a SpatialPoints* object.

global a data frame with two columns of coordinates (first longitude, then latitude), or
a SpatialLines* object or a SpatialPolygons* object. This represents the object
onto which ‘points‘ is mapped.

inc a numerical value which indicates how much the entire bounding box of ‘global‘
shoud be segmented to find nearest countries. Defaults to 100.

Value

a data frame with attributes from ‘global‘ about nearest polygon (country) to ‘points‘

Author(s)

Atreya Shankar

See Also

dist2Line

8 vectorEnum

Examples

Not run:

require(rworldmap)
require(rworldxtra)
points <- rbind(c(-81.779,52.234), c(-80.873, 51.126))
test <- demystas::spNearest(points, getMap(resolution="high"))

End(Not run)

vectorEnum Enumerating vectors

Description

Enumarates components of a vector in order to make each component unique. Useful for cases
where duplicates of vector components must be avoided.

Usage

vectorEnum(x, sep = ".")

Arguments

x a vector with possibly duplicated components

sep a character indicating how the enumeration and original vector components
should be separated. Defaults to "."

Value

a vector in the same order and dimension as ‘x‘ with each component uniquely enumerated

Author(s)

Atreya Shankar

Examples

Not run:

x <- c(rep("foo", 10), rep("bat", 25), rep("baz", 10), rep("foo", 10))
test <- demystas::vectorEnum(x)

End(Not run)

Index

∗ demystas
coords2spi, 2
greps, 3
grepsAbb, 5
grepsParallel, 5
spNearest, 7
vectorEnum, 8

coords2spi, 2

demystas-package, 2
dist2Line, 7

greps, 3
grepsAbb, 5
grepsParallel, 5

over, 3

spNearest, 7

vectorEnum, 8

9

	demystas-package
	coords2spi
	greps
	grepsAbb
	grepsParallel
	spNearest
	vectorEnum
	Index

