
Package: lpjmlkit (via r-universe)
August 25, 2024

Type Package

Title Toolkit for Basic LPJmL Handling

Version 1.7.1

Description A collection of basic functions to facilitate the work
with the Dynamic Global Vegetation Model (DGVM)
Lund-Potsdam-Jena managed Land (LPJmL) hosted at the Potsdam
Institute for Climate Impact Research (PIK). It provides
functions for performing LPJmL simulations, as well as reading,
processing and writing model-related data such as inputs and
outputs or configuration files.

License AGPL-3

LazyData true

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE, r6 = TRUE)

Encoding UTF-8

Depends R (>= 3.5.0)

URL https://github.com/PIK-LPJmL/lpjmlkit,

https://doi.org/10.5281/zenodo.7773134

BugReports https://github.com/PIK-LPJmL/lpjmlkit/issues

Imports magrittr, dplyr, processx, tibble, jsonlite, doParallel,
foreach, utils, methods, abind, rlang, withr, grDevices, cli,
stringi

Suggests rmarkdown, knitr, testthat (>= 3.0.0), terra, raster,
reshape2, maps, sf

Config/testthat/edition 3

VignetteBuilder knitr

Date 2024-07-26

Repository https://pik-piam.r-universe.dev

RemoteUrl https://github.com/PIK-LPJmL/lpjmlkit

RemoteRef HEAD

RemoteSha 051c06930a658347c72765cc03502cde17ec0bc6

1

https://github.com/PIK-LPJmL/lpjmlkit
https://doi.org/10.5281/zenodo.7773134
https://github.com/PIK-LPJmL/lpjmlkit/issues

2 Contents

Contents

lpjmlkit-package . 3
add_grid . 3
asub . 4
as_array . 5
as_header . 6
as_list . 7
as_raster . 8
as_terra . 10
as_tibble.LPJmLData . 11
calc_cellarea . 12
check_config . 13
create_header . 14
detect_io_type . 17
dim.LPJmLData . 18
dimnames.LPJmLData . 18
find_varfile . 19
get_cellindex . 19
get_datatype . 21
get_headersize . 22
get_header_item . 23
length.LPJmLData . 24
LPJmLData . 24
LPJmLGridData . 28
LPJmLMetaData . 29
make_lpjml . 33
plot.LPJmLData . 34
read_config . 35
read_grid . 36
read_header . 37
read_io . 38
read_meta . 41
run_lpjml . 42
set_header_item . 46
submit_lpjml . 47
subset.LPJmLData . 51
summary.LPJmLData . 52
transform . 53
write_config . 54
write_header . 59

Index 61

lpjmlkit-package 3

lpjmlkit-package lpjmlkit: Toolkit for Basic LPJmL Handling

Description

A collection of basic functions to facilitate the work with the Dynamic Global Vegetation Model
(DGVM) Lund-Potsdam-Jena managed Land (LPJmL) hosted at the Potsdam Institute for Climate
Impact Research (PIK). It provides functions for performing LPJmL simulations, as well as reading,
processing and writing model-related data such as inputs and outputs or configuration files.

Author(s)

Maintainer: Jannes Breier <jannesbr@pik-potsdam.de> (ORCID)

Authors:

• Sebastian Ostberg <ostberg@pik-potsdam.de> (ORCID)

• Stephen Björn Wirth <wirth@pik-potsdam.de> (ORCID)

• Sara Minoli <minoli@pik-potsdam.de> (ORCID)

• Fabian Stenzel <stenzel@pik-potsdam.de> (ORCID)

• David Hötten <davidho@pik-potsdam.de>

• Christoph Müller <cmueller@pik-potsdam.de> (ORCID)

See Also

Useful links:

• https://github.com/PIK-LPJmL/lpjmlkit

• doi:10.5281/zenodo.7773134

• Report bugs at https://github.com/PIK-LPJmL/lpjmlkit/issues

add_grid Add grid to an LPJmLData object

Description

Function to add a grid to an LPJmLData object. The function acts as a read_io() wrapper for the
grid file and adds it as an LPJmLData object itself to the $grid attribute of the main object.

Usage

add_grid(x, ...)

https://orcid.org/0000-0002-9055-6904
https://orcid.org/0000-0002-2368-7015
https://orcid.org/0000-0003-3090-3318
https://orcid.org/0000-0001-7920-3107
https://orcid.org/0000-0002-5109-0048
https://orcid.org/0000-0002-9491-3550
https://github.com/PIK-LPJmL/lpjmlkit
https://doi.org/10.5281/zenodo.7773134
https://github.com/PIK-LPJmL/lpjmlkit/issues

4 asub

Arguments

x LPJmLData object.

... Arguments passed to read_io(). Without any arguments, add_grid() will
search for a file name starting with "grid" in the same directory that x was loaded
from. This supports grid files in "meta" and "clm" format. If the grid file is in
"raw" format or should be loaded from a different directory, supply all necessary
read_io() parameters.

Details

Important:

• If "file_type" == "raw" prescribe variable = "grid" to ensure data are recognized as a
grid.

• Do not use read_io() argument subset here. add_grid will use the subset of the parent
LPJmLData object x.

Value

A copy of x (LPJmLData object) with added $grid attribute.

Examples

Not run:

Read in vegetation carbon data with meta file
vegc <- read_io(filename = "./vegc.bin.json")

Add grid as attribute (via grid file in output directory)
vegc_with_grid <- add_grid(vegc)

End(Not run)

asub Subset a named array

Description

Subset an array with the supplied dimnames and - if defined - replace values.

Usage

asub(x, ..., drop = TRUE)

as_array 5

Arguments

x An array with named dimensions.

... One or several vectors of indices or character strings to be used to subset x. Ar-
gument names refer to the dimension name to be subset, while argument values
specify the selected elements along the respective dimension. Examples: cell =
c(27411:27416), band = -c(14:16, 19:32), band = c("rainfed rice","rainfed
maize").

drop Logical. If TRUE (default), dimensions with a length of 1 are dropped from the
result. Otherwise, they are kept.

Value

array (or vector if drop = TRUE and only one dimension is left) of the selected subset of x.

Examples

my_array <- array(1,
dim = c(cell = 67, month = 12, band = 3),
dimnames = list(cell = 0:66,

month = 1:12,
band = c("band1", "band2", "band3")))

my_subset <- asub(my_array,
band = c("band1", "band3"))

dimnames(my_subset)[3]
$ band
[1] "band1"
[2] "band3"

as_array Coerce an LPJmLData object to an array

Description

Function to coerce (convert) an LPJmLData object into a pure array. Pure - because LPJmLData
stores the data already as an array which can be accessed via $data. as_array provides additional
functionality to subset or aggregate the array.

Usage

as_array(x, subset = NULL, aggregate = NULL, ...)

Arguments

x LPJmLData object.

subset List of array dimension(s) as name/key and corresponding subset vector as value,
e.g. list(cell = c(27411:27415). More information at subset.LPJmLData().

6 as_header

aggregate List of array dimension(s) as name/key and corresponding aggregation function
as value, e.g. list(band = sum).

... Arguments passed to the aggregate function(s), e.g. na.rm = TRUE.

Value

an array with dimensions of object $data with applied subset and aggregate functionality as well
as dim and dimnames from the LPJmLData object.

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Returns array attribute of LPJmLData object directly
vegc$data
time
cell 1901-12-31 1902-12-31 1903-12-31 1904-12-31 1905-12-31
0 1.362730e+04 1.363163e+04 1.364153e+04 1.365467e+04 1.366689e+04
1 1.201350e+02 1.158988e+02 1.101675e+02 1.214204e+02 1.062658e+02
2 1.334261e+02 1.210387e+02 1.218128e+02 1.183210e+02 1.159934e+02
3 9.744530e+01 9.586801e+01 8.365642e+01 8.193731e+01 7.757602e+01
4 7.592700e+01 7.821202e+01 6.798551e+01 6.632317e+01 5.691082e+01
5 1.106748e+01 1.137272e+01 1.196524e+01 1.131316e+01 9.924266e+0

Returns two-dimensional array with timeseries for the mean across cells
27410:27415
as_array(vegc,

subset = list(cell = 27410:27415),
aggregate = list(cell = mean))

band
time 1
1901-12-31 1995.959
1902-12-31 1979.585
1903-12-31 1978.054
1904-12-31 1935.623
1905-12-31 1938.805

End(Not run)

as_header Coerce LPJmLMetaData to an LPJmL header object

Description

Function to coerce (convert) an LPJmLMetaData object into an LPJmL header object. More infor-
mation at create_header().

as_list 7

Usage

as_header(x, silent = FALSE)

Arguments

x An LPJmLMetaData object

silent Logical. Whether to suppress notifications from header conversion/initialization.

Value

An LPJmL header object. More information at create_header().

Examples

Not run:

vegc_meta <- read_meta(filename = "./vegc.bin.json")

Returns a list object with the structure of an LPJmL header
as_header(vegc_meta)
$name
[1] "LPJDUMMY"
#
$header
version order firstyear nyear firstcell
4.0 4.0 1901.0 200.0 0.0
ncell nbands cellsize_lon scalar cellsize_lat
67420.0 1.0 0.5 1.0 0.5
datatype nstep timestep
3.0 1.0 1.0
#
$endian
[1] "little"

End(Not run)

as_list Coerce LPJmLMetaData to a list

Description

Function to coerce (convert) an LPJmLMetaData object into a list.

Usage

as_list(x)

8 as_raster

Arguments

x An LPJmLMetaData object

Value

A list

Examples

Not run:

vegc_meta <- read_meta(filename = "./vegc.bin.json")

Returns one dimensional array with timeseries for cells `27410:27415`
as_list(vegc_meta)
$sim_name
[1] "lu_cf"
#
$source
[1] "LPJmL C Version 5.3.001"
#
$variable
[1] "vegc"
#
$descr
[1] "vegetation carbon"
#
$unit
[1] "gC/m2"
#
$nbands
[1] 1
#
...

End(Not run)

as_raster Coerce an LPJmLData object to a raster object

Description

Function to coerce (convert) an LPJmLData object into a raster or brick object that allows for any
GIS-based raster operations. Read more about the raster package at https://rspatial.github.
io/raster/reference/raster-package.html. The successor package of raster is called terra:
https://rspatial.org/.

https://rspatial.github.io/raster/reference/raster-package.html
https://rspatial.github.io/raster/reference/raster-package.html
https://rspatial.org/

as_raster 9

Usage

as_raster(x, subset = NULL, aggregate = NULL, ...)

Arguments

x LPJmLData object

subset List of array dimension(s) as name/key and corresponding subset vector as value,
e.g.list(cell = c(27411:27415)). More information at subset.LPJmLData().

aggregate List of array dimension(s) as name/key and corresponding aggregation function
as value, e.g. list(band = sum).

... Arguments passed to the aggregate function(s), e.g. na.rm = TRUE.

Details

The $grid attribute is required for spatial transformation. When using file_type = "meta", grid
data are usually read automatically via add_grid() if the grid file is present in the same directory.
Otherwise, add_grid() has to be called explicitly with the path to a matching grid file. Supports
either multiple bands or multiple time steps. Use subset or aggregate to reduce data with multiple
bands and time steps.

Value

A raster or brick object with spatial extent and coordinates based on internal $grid attribute and
containing a lon/lat representation of x$data. If multiple bands or time steps exist, a brick is created.
Further meta information such as the lon/lat resolution are extracted from $meta.

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Returns a RasterBrick for all data
as_raster(vegc)
class : RasterBrick
dimensions : 280, 720, 201600, 200 (nrow, ncol, ncell, nlayers)
resolution : 0.5, 0.5 (x, y)
extent : -180, 180, -56, 84 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +no_defs
source : memory
names : X1901.12.31, X1902.12.31, X1903.12.31, X1904.12.31, ...
min values : 0, 0, 0, 0, ...
max values : 28680.72, 28662.49, 28640.29, 28634.03, ...

End(Not run)

10 as_terra

as_terra Coerce an LPJmLData object to a terra object

Description

Function to coerce (convert) an LPJmLData object into a rast object that allows GIS-based raster
operations. Read more about the terra package at https://rspatial.org/.

Usage

as_terra(x, subset = NULL, aggregate = NULL, ...)

Arguments

x LPJmLData object.

subset List of array dimension(s) as name/key and corresponding subset vector as value,
e.g. list(cell = c(27411:27415). More information at subset.LPJmLData().

aggregate List of array dimension(s) as name/key and corresponding aggregation function
as value, e.g. list(band = sum).

... Arguments passed to the aggregate function(s), e.g. na.rm = TRUE.

Details

The $grid attribute is required for spatial transformation. When using file_type = "meta", grid
data are usually read automatically via add_grid() if the grid file is present in the same directory.
Otherwise, add_grid() has to be called explicitly with the path to a matching grid file. Supports
either multiple bands or multiple time steps. Use subset or aggregate to reduce data with multiple
bands and time steps.

Value

A rast object with spatial extent and coordinates based on internal $grid attribute and containing a
lon/lat representation of x$data. Further meta information such as the lon/lat resolution is extracted
from $meta.

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Returns a SpatRaster for all data
as_terra(vegc)
...

End(Not run)

https://rspatial.org/

as_tibble.LPJmLData 11

as_tibble.LPJmLData Coerce an LPJmLData object to a tibble

Description

Function to coerce (convert) an LPJmLData object into a tibble (modern data.frame). Read more
about tibbles at https://r4ds.had.co.nz/tibbles.html. Please make sure to call lpjmlkit::as_tibble()
explicitly when also using the tidyverse packages tibble or dplyr.

Usage

S3 method for class 'LPJmLData'
as_tibble(x, subset = NULL, aggregate = NULL, value_name = "value", ...)

Arguments

x LPJmLData object
subset List of array dimension(s) as name/key and corresponding subset vector as value,

e.g. list(cell = c(27411:27415)). More information at subset.LPJmLData().
aggregate List of array dimension(s) as name/key and corresponding aggregation function

as value, e.g. list(band = sum).
value_name Name of value column in returned tibble. Defaults to "value".
... Arguments passed to the aggregate function(s), e.g. na.rm = TRUE.

Value

a tibble with columns corresponding to dimension naming of the LPJmLData$data array and values
in one value column.

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Returns two-dimensional tibble representation of vegc$data.
as_tibble(vegc)
cell time band value
<fct> <fct> <fct> <dbl>
1 0 1901-12-31 1 13627.
2 1 1901-12-31 1 120.
3 2 1901-12-31 1 133.
4 3 1901-12-31 1 97.4
5 4 1901-12-31 1 75.9
6 5 1901-12-31 1 11.1

End(Not run)

https://r4ds.had.co.nz/tibbles.html

12 calc_cellarea

calc_cellarea Calculate the cell area of LPJmL cells

Description

Calculate the cell area of LPJmL cells based on an LPJmLData object or latitude coordinates and
grid resolution. Uses a spherical representation of the Earth.

Usage

calc_cellarea(
x,
cellsize_lon = 0.5,
cellsize_lat = cellsize_lon,
earth_radius = 6371000.785,
return_unit = "m2"

)

Arguments

x LPJmLData object with $grid attribute, an LPJmLData object of variable "grid"
("LPJGRID") or a vector of cell-center latitude coordinates in degrees.

cellsize_lon Grid resolution in longitude direction in degrees (default: 0.5). If x is an
LPJmLData object the resolution will be taken from the meta data included in x
if available.

cellsize_lat Grid resolution in latitude direction in degrees (default: same as cellsize_lon).
If x is an LPJmLData object the resolution will be taken from the meta data in-
cluded in x if available.

earth_radius Radius of the sphere (in m) used to calculate the cell areas.
return_unit Character string describing the area unit of the returned cell areas. Defaults to

"m2", further options: "ha" or "km2".

Value

A vector or array matching the space dimension(s) of x if x is an LPJmLData object. A vector
of the same length as x if x is a vector of latitude coordinates. Cell areas are returned in the unit
return_unit.

Examples

grid <- matrix(
data = c(-179.75, 89.75, -0.25, 0.25, 0.25, -0.25, 179.75, -89.75),
ncol = 2,
byrow = TRUE,
dimnames = list(NULL, c("lon", "lat"))

)
gridarea <- calc_cellarea(grid[,"lat"])

check_config 13

check_config Check the validity of LPJmL config JSON files

Description

Check if created LPJmL config JSON files (write_config()) are valid and are ready to be used
for simulations using lpjcheck for multiple files.

Usage

check_config(
x,
model_path = ".",
sim_path = NULL,
return_output = FALSE,
raise_error = FALSE,
output_path = NULL

)

Arguments

x job_details object returned by write_config() or character vector providing
the config file names (hint: returns x as a list entry).

model_path Character string providing the path to LPJmL (equal to LPJROOT environment
variable). Defaults to ".".

sim_path Character string defining path where all simulation data are written, including
output, restart and configuration files. If NULL, model_path is used. See also
write_config

return_output Parameter affecting the output. If FALSE print stdout/stderr message. If TRUE,
return the result of the check. Defaults to FALSE.

raise_error Logical. Whether to raise an error if sub-process has non-zero exit status. De-
faults to FALSE.

output_path Argument is deprecated as of version 1.0; use sim_path instead.

Value

NULL.

Examples

Not run:
library(tibble)
library(lpjmlkit)

model_path <- "./LPJmL_internal"
sim_path <-"./my_runs"

14 create_header

Basic usage
my_params <- tibble(

sim_name = c("scen1", "scen2"),
random_seed = c(12, 404),
`pftpar[[1]]$name` = c("first_tree", NA),
`param$k_temp` = c(NA, 0.03),
new_phenology = c(TRUE, FALSE)

)

config_details <- write_config(
x = my_params,
model_path = model_path,
sim_path = sim_path

)

check_config(x = config_details,
model_path = model_path,
sim_path = sim_path,
return_output = FALSE

)

End(Not run)

create_header Create a new LPJmL input/output file header

Description

Create a header from scratch in the format required by write_header().

Usage

create_header(
name = "LPJGRID",
version = 3,
order = 1,
firstyear = 1901,
nyear = 1,
firstcell = 0,
ncell,
nbands = 2,
cellsize_lon = 0.5,
scalar = 1,
cellsize_lat = cellsize_lon,
datatype = 3,
nstep = 1,
timestep = 1,

create_header 15

endian = .Platform$endian,
verbose = TRUE

)

Arguments

name Header name attribute (default: ‘"LPJGRID").

version CLM version to use (default: 3).

order Order of data items. See details below or LPJmL code for supported values. The
order may be provided either as an integer value or as a character string (default:
1).

firstyear Start year of data in file (default: 1901).

nyear Number of years of data included in file (default: 1).

firstcell Index of first data item (default: 0).

ncell Number of data items per band.

nbands Number of bands per year of data (default: 2).

cellsize_lon Longitude cellsize in degrees (default: 0.5).

scalar Conversion factor applied to data when it is read by LPJmL or by read_io()
(default: 1.0).

cellsize_lat Latitude cellsize in degrees (default: same as cellsize_lon).

datatype LPJmL data type in file. See details below or LPJmL code for valid data type
codes (default: 3).

nstep Number of time steps per year. Added in header version 4 to separate time bands
from content bands (default: 1).

timestep If larger than 1, outputs are averaged over timestep years and only written once
every timestep years (default: 1).

endian Endianness to use for file (either "big" or "little", by default uses platform-
specific endianness .Platform$endian).

verbose If TRUE (the default), function provides some feedback on datatype and when
using default values for missing parameters. If FALSE, only errors are reported.

Details

File headers in input files are used by LPJmL to determine the structure of the file and how to read
it. They can also be used to describe the structure of output files.

Header names usually start with "LPJ" followed by a word or abbreviation describing the type of
input/output data. See LPJmL code for valid header names.

The version number determines the amount of header information included in the file. All versions
save the header name and header attributes ’version’, ’order’, ’firstyear’, ’nyear’, ’firstcell’, ’ncell’,
and ’nbands’. Header versions 2, 3 and 4 add header attributes ’cellsize_lon’ and ’scalar’. Header
versions 3 and 4 add header attributes ’cellsize_lat’ and ’datatype’. Header version 4 adds attributes
’nstep’ and ’timestep’.

16 create_header

Valid values for order are 1 / "cellyear", 2 / "yearcell", 3 / "cellindex", and 4 / "cellseq".
The default for LPJmL input files is 1. The default for LPJmL output files is 4, except for grid
output files which also use 1.

By default, input files contain data for all cells, indicated by setting the firstcell index to 0. If
firstcell > 0, LPJmL assumes the first firstcell cells to be missing in the data.

Valid codes for the datatype attribute and the corresponding LPJmL data types are: 0 / "byte"
(LPJ_BYTE), 1 / "short" (LPJ_SHORT), 2 / "int" (LPJ_INT), 3 / "float" (LPJ_FLOAT), 4 /
"double" (LPJ_DOUBLE).

The default parameters of the function are valid for grid input files using LPJ_FLOAT data type.

Value

The function returns a list with 3 components:

• name: The header name, e.g. "LPJGRID".

• header: Vector of header values (’version’, ’order’, ’firstyear’, ’nyear’, ’firstcell’, ’ncell’,
’nbands’, ’cellsize_lon’, ’scalar’, ’cellsize_lat’, ’datatype’, ’nstep’, ’timestep’).

• endian: Endian used to write binary data, either "little" or "big".

See Also

• read_header() for reading headers from LPJmL input/output files.

• write_header() for writing headers to files.

Examples

header <- create_header(
name = "LPJGRID",
version = 3,
order = 1,
firstyear = 1901,
nyear = 1,
firstcell = 0,
ncell = 67420,
nbands = 2,
cellsize_lon = 0.5,
scalar = 1.0,
cellsize_lat = 0.5,
datatype = 3,
nstep = 1,
timestep = 1,
endian = .Platform$endian,
verbose = TRUE

)

detect_io_type 17

detect_io_type Detect the file type of an LPJmL input/output file

Description

This utility function tries to detect automatically if a provided file is of "clm", "meta", or "raw"
file type. NetCDFs and simple text formats such as ".txt" or ".csv" are also detected.

Usage

detect_io_type(filename)

Arguments

filename Character string naming the file to check.

Value

Character vector of length 1 giving the file type:

• "cdf" for a NetCDF file (classic or NetCDF4/HDF5 format).

• "clm" for a binary LPJmL input/output file with header.

• "meta" for a JSON meta file describing a binary LPJmL input/output file.

• "raw" for a binary LPJmL input/output file without header. This is also the default if no other
file type can be recognized.

• "text" for any type of text-only file, e.g. ".txt" or ".csv"

Examples

Not run:
detect_io_type(filename = "filename.clm")
[1] "clm"

End(Not run)

18 dimnames.LPJmLData

dim.LPJmLData Dimensions of an LPJmLData data array

Description

Function to get the dimensions of the data array of an LPJmLData object.

Usage

S3 method for class 'LPJmLData'
dim(x)

Arguments

x LPJmLData object

Value

For the default method, either NULL or a numeric vector, which is coerced to integer (by truncation).

dimnames.LPJmLData Dimnames of an LPJmLData data array

Description

Function to get the dimnames (list) of the data array of an LPJmLData object.

Usage

S3 method for class 'LPJmLData'
dimnames(x)

Arguments

x LPJmLData object

Value

A list of the same length as dim(x). Components are character vectors with positive length of the
respective dimension of x.

find_varfile 19

find_varfile Search for a variable file in a directory

Description

Function to search for a file containing a specific variable in a specific directory.

Usage

find_varfile(searchdir, variable = "grid", strict = FALSE)

Arguments

searchdir Directory where to look for the variable file.

variable Single character string containing the variable to search for

strict Boolean. If set to TRUE, file must be named "variable.", where "" is one or
two file extensions with 3 or 4 characters, e.g. "grid.bin.json" if variable =
"grid". If set to FALSE, the function will first try to match the strict pattern. If
unsuccessful, any filename that starts with "variable" will be matched.

Details

This function looks for file names in searchdir that match the pattern parameter in its list.files()
call. Files of type "meta" are preferred. Files of type "clm" are also accepted. The function returns
an error if no suitable file or multiple files are found.

Value

Character string with the file name of a matched file, including the full path.

get_cellindex Get Cell Index

Description

This function returns the cell index from a grid file based on the provided extent or coordinates.
If neither extent nor coordinates are provided, the full grid will be returned. If both extent and
coordinates are provided, the function will stop and ask for only one of them. The extent should be
a vector of length 4 in the form c(lonmin, lonmax, latmin, latmax). If the extent is not in the correct
form, the function will swap the values to correct it.

Usage

get_cellindex(grid_filename, extent = NULL, coordinates = NULL)

20 get_cellindex

Arguments

grid_filename A string representing the grid file name.

extent A numeric vector (lonmin, lonmax, latmin, latmax) containing the longitude and
latitude boundaries between which values included in the subset.

coordinates A list of two named (lon, lat) numeric vectors representing the coordinates.

Details

The function reads a grid file specified by grid_filename and creates a data frame with columns
for longitude, latitude, and cell number. The cell number is a sequence from 1 to the number of
rows in the data frame.

If an extent is provided, the function filters the cells to include only those within the specified
longitude and latitude range. The extent should be a numeric vector of length 4 in the form
c(lonmin, lonmax, latmin, latmax).

If a list of coordinates is provided, the function filters the cells to include only those that match
the specified coordinates. The coordinates should be a list of two character vectors representing
the longitude and latitude values as for subset().

If both extent and coordinates are provided, the function will stop and ask for only one of them.
If neither extent nor coordinates are provided, the function will return the cell numbers for all
cells in the grid.

The function also includes checks for input types and values, and gives specific error messages for
different error conditions. For example, it checks if the grid_filename exists, if the extent vector
has the correct length, and if the coordinates list contains two vectors of equal length.

Value

The cell index from the grid file based on the provided extent or coordinates.

Examples

Not run:
get_cellindex(

grid_filename = "my_grid.bin.json",
extent = c(-123.25, -122.75, 49.25, 49.75) # (lonmin, lonmax, latmin, latmax)

)
get_cellindex(

grid_filename = "my_grid.bin.json",
coordinates = list(lon = c(-123.25, -122.75), lat = c(49.25, 49.75))

)

End(Not run)

get_datatype 21

get_datatype Data type of an LPJmL input/output file

Description

Provides information on the data type used in an LPJmL input/output file based on the ’datatype’
attribute included in the file header.

Usage

get_datatype(header, fail = TRUE)

Arguments

header Header list object as returned by read_header() or create_header(). Alter-
natively, can be a single integer just giving the data type code or a single char-
acter string giving one of the LPJmL type names c("byte", "short", "int",
"float", "double").

fail Determines whether the function should fail if the datatype is invalid (default:
TRUE).

Value

On success, the function returns a list object with three components:

• type: R data type; can be used with what parameter of readBin().

• size: size of data type; can be used with size parameter of readBin().

• signed: whether or not the data type is signed; can be used with signed parameter of readBin().

If fail = FALSE, the function returns NULL if an invalid datatype is provided.

See Also

• read_header() for reading headers from LPJmL input/output files.

• create_header() for creating headers from scratch.

• get_headersize() for determining the size of file headers.

Examples

Not run:
Read file header
header <- read_header("filename.clm")
Open file for reading
fp <- file("filename.clm", "rb")
Skip over file header
seek(fp, get_headersize(header))
Read in file data

22 get_headersize

file_data <- readBin(
fp,
what = get_datatype(header)$type,
size = get_datatype(header)$size,
signed = get_datatype(header)$signed,
n = header$header["ncell"] * header$header["nbands"] *

header$header["nyear"] * header$header["nstep"],
endian = header[["endian"]]

)
Close file
close(fp)

End(Not run)

get_headersize Determine the size of an LPJmL input/output file header

Description

Returns the size in bytes of an LPJmL file header based on a header list object read by read_header()
or generated by create_header().

Usage

get_headersize(header)

Arguments

header Header list object as returned by read_header() or create_header().

Value

Integer value giving the size of the header in bytes. This can be used when seeking in the file or to
calculate the expected total file size in combination with the number of included data values and the
data type.

See Also

• read_header() for reading a header from an LPJmL input/output file.

• create_header() for creating a header from scratch.

Examples

Not run:
header <- read_header("filename.clm")
size <- get_headersize(header)
Open file for reading
fp <- file("filename.clm", "rb")

get_header_item 23

Skip over file header
seek(fp, size)
Add code to read data from file

End(Not run)

get_header_item Retrieve information from an LPJmL input/output file header

Description

Convenience function to extract information from a header object as returned by read_header()
or create_header(). Returns one item per call.

Usage

get_header_item(header, item)

Arguments

header LPJmL file header as returned by read_header() or create_header().

item Header information item to retrieve. One of c("name", "version", "order",
"firstyear", "nyear", "firstcell", "ncell", "nbands", "cellsize_lon",
"scalar", "cellsize_lat", "datatype", "nstep", "timestep", "endian").

Value

Requested header item. Character string in case of "name" and "endian", otherwise numeric value.

See Also

• create_header() for creating headers from scratch and for a more detailed description of the
LPJmL header format.

• read_header() for reading headers from LPJmL input/output files.

Examples

Not run:
Read file header
header <- read_header("filename.clm")
nyear <- get_header_item(header = header, item = "nyear")

End(Not run)

24 LPJmLData

length.LPJmLData Length of an LPJmLData data array

Description

Function to get the length of the data array of an LPJmLData object.

Usage

S3 method for class 'LPJmLData'
length(x)

Arguments

x LPJmLData object

Value

A non-negative integer or numeric (which will be rounded down).

LPJmLData LPJmL data class

Description

A data container for LPJmL input and output. Container - because an LPJmLData object is an
environment in which the data array as well as the meta data are stored after read_io(). The data
array can be accessed via $data, the meta data via $meta. The enclosing environment is locked and
cannot be altered by any other than the available modify methods to ensure its integrity and validity.
Use base stats methods like print(), summary.LPJmLData() or plot.LPJmLData() to get insights
and export methods like as_tibble() or as_raster() to export it into common working formats.

Active bindings

meta LPJmLMetaData object to store corresponding meta data.

data array containing the underlying data.

grid Optional LPJmLData object containing the underlying grid.

LPJmLData 25

Methods

Public methods:
• LPJmLData$add_grid()

• LPJmLData$subset()

• LPJmLData$transform()

• LPJmLData$as_array()

• LPJmLData$as_tibble()

• LPJmLData$as_raster()

• LPJmLData$as_terra()

• LPJmLData$plot()

• LPJmLData$length()

• LPJmLData$dim()

• LPJmLData$dimnames()

• LPJmLData$summary()

• LPJmLData$print()

• LPJmLData$.__set_data__()

• LPJmLData$.__set_grid__()

• LPJmLData$new()

• LPJmLData$clone()

Method add_grid(): Method to add a grid to an LPJmLData object. See also add_grid

Usage:
LPJmLData$add_grid(...)

Arguments:

... See add_grid().

Method subset(): Method to use dimension names of LPJmLData$data array directly to subset
each dimension to match the supplied vectors.

Usage:
LPJmLData$subset(...)

Arguments:

... See subset.LPJmLData()

Method transform(): Method to transform inner LPJmLData$data array into another space or
time format.

Usage:
LPJmLData$transform(...)

Arguments:

... See transform().

Method as_array(): Method to coerce (convert) an LPJmLData object into an array.

Usage:

26 LPJmLData

LPJmLData$as_array(...)

Arguments:
... See as_array().

Method as_tibble(): Method to coerce (convert) an LPJmLData object into a tibble (modern
data.frame).

Usage:
LPJmLData$as_tibble(...)

Arguments:
... See as_tibble().

Method as_raster(): Method to coerce (convert) an LPJmLData object into a raster or brick
object that can be used for any GIS-based raster operations.

Usage:
LPJmLData$as_raster(...)

Arguments:
... See as_raster().

Method as_terra(): Method to coerce (convert) an LPJmLData object into a rast object that
can be used for any GIS-based raster operations.

Usage:
LPJmLData$as_terra(...)

Arguments:
... See as_terra().

Method plot(): Method to plot a time-series or raster map of an LPJmLData object.

Usage:
LPJmLData$plot(...)

Arguments:
... See plot.LPJmLData().

Method length(): Method to get the length of the data array of an LPJmLData object.
See also length.

Usage:
LPJmLData$length()

Method dim(): Method to get the dimensions of the data array of an LPJmLData object.
See also dim.

Usage:
LPJmLData$dim()

Method dimnames(): Method to get the dimnames (list) of the data array of an LPJmLData
object.

Usage:

LPJmLData 27

LPJmLData$dimnames(...)

Arguments:

... See dimnames.LPJmLData().

Method summary(): Method to get the summary of the data array of an LPJmLData object.

Usage:
LPJmLData$summary(...)

Arguments:

... See [summary.LPJmLData()].

Method print(): Method to print the LPJmLData object.
See also print.

Usage:
LPJmLData$print()

Method .__set_data__(): !Internal method only to be used for package development!

Usage:
LPJmLData$.__set_data__(data)

Arguments:

data Data array.

Method .__set_grid__(): !Internal method only to be used for package development!

Usage:
LPJmLData$.__set_grid__(grid)

Arguments:

grid An LPJmLData object holding grid coordinates.

Method new(): !Internal method only to be used for package development!

Usage:
LPJmLData$new(data, meta_data = NULL)

Arguments:

data array with LPJmL data.
meta_data An LPJmLMetaData object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LPJmLData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

28 LPJmLGridData

LPJmLGridData LPJmL grid data class

Description

A dedicated data class for an LPJmL input or output grid. LPJmLGridData serves the spatial refer-
ence for any LPJmLData objects and matches its spatial dimensions ("cell" or "lon", "lat") when at-
tached as an grid attribute to it.\ LPJmLGridData holds the information which longitude and latitude
correspond to each cell center assuming WGS84 as the coordinate reference system or the corre-
sponding cell index when the data comes with longitude and latitude dimension. As in LPJmLData
the data array can be accessed via $data, the meta data via $meta.

Super class

lpjmlkit::LPJmLData -> LPJmLGridData

Methods

Public methods:
• LPJmLGridData$add_grid()

• LPJmLGridData$plot()

• LPJmLGridData$new()

• LPJmLGridData$print()

• LPJmLGridData$clone()

Method add_grid(): ! Not allowed to add a grid to an LPJmLGridData object.

Usage:
LPJmLGridData$add_grid(...)

Arguments:

... See add_grid().

Method plot(): ! No plot function available for LPJmLGridData object. Use as_raster() or
as_terra() (and plot()) to visualize the grid.

Usage:
LPJmLGridData$plot(...)

Arguments:

... See plot().

Method new(): !Internal method only to be used for package development!

Usage:
LPJmLGridData$new(lpjml_data)

Arguments:

lpjml_data LPJmLData object with variable "grid", "cellid" or "LPJGRID"

LPJmLMetaData 29

Method print(): Method to print the LPJmLGridData.
See also print

Usage:
LPJmLGridData$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
LPJmLGridData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

LPJmLMetaData LPJmL meta data class

Description

A meta data container for LPJmL input and output meta data. Container - because an LPJmLMetaData
object is an environment in which the meta data are stored after read_meta() (or read_io()). Each
attribute can be accessed via $<attribute>. To get an overview over available attributes, print the
object or export it as a list as_list(). The enclosing environment is locked and cannot be altered.

Active bindings

sim_name Simulation name (works as identifier in LPJmL Runner).

source LPJmL version (character string).

history Character string of the call used to run LPJmL. This normally includes the path to the
LPJmL executable and the path to the configuration file for the simulation.

variable Name of the input/output variable, e.g. "npp" or "runoff".

descr Description of the input/output variable.

unit Unit of the input/output variable.

nbands Number (numeric) of bands (categoric dimension). Please note that nbands follows the
convention in LPJmL, which uses the plural form for bands as opposed to nyear or ncell.

band_names Name of the bands (categoric dimension). Not included if nbands = 1.

nyear Number (numeric) of data years in the parent LPJmLData object.

firstyear First calendar year (numeric) in the parent LPJmLData object.

lastyear Last calendar year (numeric) in the parent LPJmLData object.

nstep Number (numeric) of intra-annual time steps. 1 for annual, 12 for monthly, and 365 for
daily data.

timestep Number (numeric) of years between time steps. timestep = 5 means that output is
written every 5 years.

ncell Number (numeric) of cells in the parent LPJmLData object.

30 LPJmLMetaData

firstcell First cell (numeric) in the parent LPJmLData object.

cellsize_lon Longitude cellsize in degrees (numeric).

cellsize_lat Latitude cellsize in degrees (numeric).

datatype File data type (character string), e.g. "float". Note that data are converted into R-
internal data type by read_io().

scalar Conversion factor (numeric) applied when reading raw data from file. The parent LPJmLData
object contains the values after the application of the conversion factor.

order Order of the data items in the file, either "cellyear", "yearcell", "cellindex", or
"cellseq". The structure of the data array in the parent LPJmLData object may differ from
the original order in the file depending on the dim_order parameter used in read_io().

offset Offset (numeric) at the start of the binary file before the actual data start.

bigendian (Logical) Endianness refers to the order in which bytes are stored in a multi-byte value,
with big-endian storing the most significant byte at the lowest address and little-endian storing
the least significant byte at the lowest address.

format Binary format (character string) of the file containing the actual data. Either "raw", "clm"
(raw with header), or "cdf" for NetCDF format.

filename Name of the file containing the actual data.

subset Logical. Whether parent LPJmLData object is subsetted.

map Character vector describing how to map the bands in an input file to the bands used inside
LPJmL. May be used by read_io() to construct a band_names attribute.

version Version of data file.

._data_dir_ Internal character string containing the directory from which the file was loaded.

._subset_space_ Internal logical. Whether space dimensions are subsetted in the parent LPJmLData
object.

._fields_set_ Internal character vector of names of attributes set by the meta file.

._time_format_ Internal character string describing the time dimension format, either "time" or
"year_month_day".

._space_format_ Internal character string describing the space dimension format, either "cell"
or "lon_lat".

._dimension_map_ Internal dictionary/list of space and time dimension formats with categories
and namings.

Methods

Public methods:
• LPJmLMetaData$as_list()

• LPJmLMetaData$as_header()

• LPJmLMetaData$print()

• LPJmLMetaData$.__init_grid__()

• LPJmLMetaData$.__update_subset__()

• LPJmLMetaData$.__transform_time_format__()

• LPJmLMetaData$.__transform_space_format__()

LPJmLMetaData 31

• LPJmLMetaData$.__set_attribute__()

• LPJmLMetaData$new()

• LPJmLMetaData$clone()

Method as_list(): Method to coerce (convert) an LPJmLMetaData object into a list.
See also as_list().

Usage:
LPJmLMetaData$as_list()

Method as_header(): Method to coerce (convert) an LPJmLMetaData object into an LPJmL
binary file header. More information about file headers at create_header()).

Usage:
LPJmLMetaData$as_header(...)

Arguments:

... See as_header().

Method print(): Method to print an LPJmLMetaData object. See also print.

Usage:
LPJmLMetaData$print(all = TRUE, spaces = "")

Arguments:

all Logical. Should all attributes be printed or only the most relevant (all = FALSE)?
spaces Internal parameter Spaces to be printed at the start.

Method .__init_grid__(): !Internal method only to be used for package development!

Usage:
LPJmLMetaData$.__init_grid__()

Method .__update_subset__(): !Internal method only to be used for package development!

Usage:
LPJmLMetaData$.__update_subset__(
subset,
cell_dimnames = NULL,
time_dimnames = NULL,
year_dimnames = NULL

)

Arguments:

subset List of subset arguments, see also subset.LPJmLData().
cell_dimnames Optional list of new cell_dimnames of subset data to update meta data. Re-

quired if spatial dimensions are subsetted.
time_dimnames Optional list of new time_dimnames of subset data to update meta data. Re-

quired if time dimension is subsetted.
year_dimnames Optional list of new year_dimnames of subset data to update meta data. Re-

quired if year dimension is subsetted.

32 LPJmLMetaData

Method .__transform_time_format__(): !Internal method only to be used for package de-
velopment!

Usage:

LPJmLMetaData$.__transform_time_format__(time_format)

Arguments:

time_format Character. Choose between "year_month_day" and "time".

Method .__transform_space_format__(): !Internal method only to be used for package
development!

Usage:

LPJmLMetaData$.__transform_space_format__(space_format)

Arguments:

space_format Character. Choose between "lon_lat" and "cell".

Method .__set_attribute__(): !Internal method only to be used for package development!

Usage:

LPJmLMetaData$.__set_attribute__(key, value)

Arguments:

key Name of the attribute, e.g. "variable"
value Value of the attribute, e.g. "grid"

Method new(): Create a new LPJmLMetaData object.

Usage:

LPJmLMetaData$new(x, additional_attributes = list(), data_dir = NULL)

Arguments:

x A list (not nested) with meta data.
additional_attributes A list of additional attributes to be set that are not included in file

header or JSON meta file. These are c"(band_names", "variable", "descr", "unit")

data_dir Directory containing the file this LPJmLMetaData object refers to. Used to "lazy
load" grid.

Method clone(): The objects of this class are cloneable with this method.

Usage:

LPJmLMetaData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

make_lpjml 33

make_lpjml Compile LPJmL model

Description

Compiles the LPJmL source code and creates an executable by executing "make all" on the operat-
ing system shell.

Usage

make_lpjml(
model_path = ".",
parallel_cores = NULL,
make_clean = FALSE,
raise_error = TRUE,
debug = NULL

)

Arguments

model_path Character string providing the path to LPJmL (equal to LPJROOT environment
variable). Defaults sto ".".

parallel_cores Numeric defining the number of available CPU cores for parallelization.

make_clean Logical. If set to TRUE, calls "make clean" first to remove previous installation.
Defaults to FALSE.

raise_error Logical. Whether to raise an error if sub-process has non-zero exit status, hence
if compilation fails. Defaults to TRUE.

debug NULL or Logical. Whether to compile LPJmL with "-debug" flag. Defaults to
NULL. If set to FALSE or TRUE, make_clean is set automatically and compila-
tion configuration is reset with/without "-debug". Also the "configure.sh" file is
rewritten.

Value

A list with process status, see run.

Examples

Not run:
model_path <- "./LPJmL_internal"
make_lpjml(model_path = model_path)

End(Not run)

34 plot.LPJmLData

plot.LPJmLData Plot an LPJmLData object

Description

Function to plot a time-series or raster map of an LPJmLData object.

Usage

S3 method for class 'LPJmLData'
plot(x, subset = NULL, aggregate = NULL, raster_extent = NULL, ...)

Arguments

x LPJmLData object

subset List of array dimension(s) as name/key and corresponding subset vector as value,
e.g. list(cell = c(27411:27416)). More information at subset.LPJmLData().

aggregate List of array dimension(s) as name/key and corresponding aggregation function
as value, e.g. list(band = sum).

raster_extent Optional parameter to crop map display of spatial data. An extent or any ob-
ject from which an Extent object can be extracted. Not relevant if aggregate
includes spatial dimension.

... Arguments passed to plot and plot

Details

Depending on the dimensions of the LPJmLData object’s internal data array the plot will be a ...

• single map plot: more than 8 "cell"s or "lat" & "lon" dimensions available)

• multiple maps plot: length of one time (e.g."time", "year", "month") or "band" dimension
> 1.

• time series plot: less than 9 "cell"s

• lat/lon plot: a subsetted/aggregated "lat" or "lon" dimension

The plot can only handle 2-3 dimensions. Use arguments subset and aggregate to modify x$data
to the desired plot type. If more than three dimensions have length > 1,’ plot will return an error
and suggest to reduce the number of dimensions.

Note that the plot function aims to provide a quick overview of the data rather than create publication-
ready graphs.

Value

No return value; called for side effects.

read_config 35

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Plot first 9 years starting from 1901 as a raster plot
plot(vegc)

Plot raster with mean over the whole time series
plot(vegc,

aggregate = list(time = mean))

Plot only year 2010 as a raster
plot(vegc,

subset = list(time = "2010"))

Plot first 10 time steps as global mean time series. Note: Aggregation
across cells is not area-weighted.
plot(vegc,

subset = list(time = 1:10),
aggregate = list(cell = mean))

Plot time series for cells with LPJmL index 27410 - 27415 (C indices start
at 0 in contrast to R indices starting at 1).
plot(vegc,

subset = list(cell = 27411:27416))

End(Not run)

read_config Read an LPJmL configuration file

Description

Reads a configuration (config) file (compilable csjon/js file or json file) and turns it into a nested list
object.

Usage

read_config(filename, from_restart = FALSE, macro = "")

Arguments

filename Character string representing path (if different from current working directory)
and filename.

36 read_grid

from_restart Logical defining whether config files should be read as from_restart (transient
run) or without (spinup run). Defaults to FALSE (spinup run). Used only if file
is not pre-compiled (no json).

macro Optional character string to pass one or several macros to the pre-compiler, e.g.
("-DFROM_RESTART"). Used only if file is not pre-compiled (no json).

Value

A nested list object representing the LPJmL configuration read from filename.

Examples

Not run:
config <- read_config(filename = "config_spinup.json")

config[["version"]]
[1] "5.3"

config[["pftpar"]][[1]][["name"]]
[1] "tropical broadleaved evergreen tree"

config[["input"]][["coord"]][["name"]]
[1] "input_VERSION2/grid.bin"

visualize configuration as tree view
View(config)

End(Not run)

read_grid Read LPJmL input and output grid files

Description

Generic function to read LPJmL input & output files in different formats. Depending on the format,
arguments can be automatically detected or have to be passed as individual arguments.

Usage

read_grid(...)

Arguments

... See read_io for further arguments.

Details

See read_io for more details.

read_header 37

Value

An LPJmLGridData object.

Examples

Not run:
my_grid <- read_io("grid.bin.json")

End(Not run)

read_header Read header (any version) from LPJmL input/output file

Description

Reads a header from an LPJmL clm file. CLM is the default format used for LPJmL input files and
can also be used for output files.

Usage

read_header(filename, force_version = NULL, verbose = TRUE)

Arguments

filename Filename to read header from.

force_version Manually set clm version. The default value NULL means that the version is
determined automatically from the header. Set only if the version number in the
file header is incorrect.

verbose If TRUE (the default), read_header provides some feedback when using default
values for missing parameters. If FALSE, only errors are reported.

Value

The function returns a list with 3 components:

• name: Header name, e.g. "LPJGRID"; describes the type of data in the file.

• header: Vector of header values (’version’, ’order’, ’firstyear’, ’nyear’, ’firstcell’, ’ncell’,
’nbands’, ’cellsize_lon’, ’scalar’, ’cellsize_lat’, ’datatype’, ’nstep’, ’timestep’) describing the
file structure. If header version is <4, the header is partially filled with default values.

• endian: Endianness of file ("little" or "big").

See Also

• create_header() for a more detailed description of the LPJmL header format.

• write_header() for writing headers to files.

38 read_io

Examples

Not run:
header <- read_header("filename.clm")

End(Not run)

read_io Read LPJmL input and output files

Description

Generic function to read LPJmL input & output files in different formats. Depending on the format,
arguments can be automatically detected or have to be passed as individual arguments.

Usage

read_io(
filename,
subset = list(),
band_names = NULL,
dim_order = c("cell", "time", "band"),
file_type = NULL,
version = NULL,
order = NULL,
firstyear = NULL,
nyear = NULL,
firstcell = NULL,
ncell = NULL,
nbands = NULL,
cellsize_lon = NULL,
scalar = NULL,
cellsize_lat = NULL,
datatype = NULL,
nstep = NULL,
timestep = NULL,
endian = NULL,
variable = NULL,
descr = NULL,
unit = NULL,
name = NULL,
silent = FALSE

)

read_io 39

Arguments

filename Mandatory character string giving the file name to read, including its path and
extension.

subset Optional list allowing to subset data read from the file along one or several of its
dimensions. See details for more information.

band_names Optional vector of character strings providing the band names or NULL. Nor-
mally determined automatically from the meta file in case of output files using
file_type = "meta".

dim_order Order of dimensions in returned LPJmLData object. Must be a character vec-
tor containing all of the following in any order: c("cell", "time", "band").
Users may select the order most useful to their further data processing.

file_type Optional character string giving the file type. This is normally detected automat-
ically but can be prescribed if automatic detection is incorrect. Valid options:

• "raw", a binary file without header.
• "clm", a binary file with header.
• "meta", a meta information JSON file complementing a raw or clm file.

version Integer indicating the clm file header version, currently supports one of c(1, 2,
3, 4).

order Integer value or character string describing the order of data items in the file
(default in input file: 1; in output file: 4). Valid values for LPJmL input/output
files are "cellyear"/ 1, "yearcell" / 2, "cellindex"/ 3, and "cellseq" / 4,
although only options 1 and 4 are supported by this function.

firstyear Integer providing the first year of data in the file.

nyear Integer providing the number of years of data included in the file. These are not
consecutive in case of timestep > 1.

firstcell Integer providing the cell index of the first data item. 0 by default.

ncell Integer providing the number of data items per band.

nbands Integer providing the number of bands per time step of data.

cellsize_lon Numeric value providing the longitude cell size in degrees.

scalar Numeric value providing a conversion factor that needs to be applied to raw data
when reading it from file to derive final values.

cellsize_lat Numeric value providing the latitude cell size in degrees.

datatype Integer value or character string describing the LPJmL data type stored in the
file. Supported options: "byte" / 0, "short" / 1, "int" / 2, "float" / 3, or
"double" / 4.

nstep Integer value defining the number of within-year time steps of the file. Valid
values are 1 (yearly), 12 (monthly), 365 (daily). Defaults to 1 if not read from
file ("clm" or "meta" file) or provided by the user.

timestep Integer value providing the interval in years between years represented in the file
data. Normally 1, but LPJmL also allows averaging annual outputs over several
years. Defaults to 1 if not read from file ("clm" or "meta" file) or provided by
user.

40 read_io

endian Endianness to use for file (either "big" or "little"). By default uses endi-
anness determined from file header or set in meta information or the platform-
specific endianness .Platform$endian if not set.

variable Optional character string providing the name of the variable contained in the
file. Included in some JSON meta files. Important: If file_type == "raw",
prescribe variable = "grid" to ensure that data are recognized as a grid.

descr Optional character string providing a more detailed description of the variable
contained in the file. Included in some JSON meta files.

unit Optional character string providing the unit of the data in the file. Included in
some JSON meta files.

name Optional character string specifying the header name. This is usually read
from clm headers for file_type = "clm" but can be specified for the other
file_type options.

silent If set to TRUE, suppresses most warnings or messages. Use only after testing that
read_io() works as expected with the files it is being used on. Default: FALSE.

Details

The file_type determines which arguments are mandatory or optional. filename must always
be provided. file_type is usually detected automatically. Supply only if detected file_type is
incorrect.

In case of file_type = "meta", if any of the function arguments not listed as "mandatory" are
provided and are already set in the JSON file, a warning is given, but they are still overwritten.
Normally, you would only set meta attributes not set in the JSON file.

In case of file_type = "clm", function arguments not listed as "optional" are usually determined
automatically from the file header included in the clm file. Users may still provide any of these
arguments to overwrite values read from the file header, e.g. when they know that the values in the
file header are wrong. Also, clm headers with versions < 4 do not contain all header attributes, with
missing attributes filled with default values that may not be correct for all files.

In case of file_type = "raw", files do not contain any information about their structure. Users
should provide all arguments not listed as "optional". Otherwise, default values valid for LPJmL
standard outputs are used for arguments not supplied by the user. For example, the default firstyear
is 1901, the default for nyear, nbands, nstep, and timestep is 1.

subset can be a list containing one or several named elements. Allowed names are "band", "cell",
and "year".

• "year" can be used to return data for a subset of one or several years included in the file.
Integer indices can be between 1 and nyear. If subsetting by actual calendar years (starting at
firstyear) a character vector has to be supplied.

• "band" can be used to return data for a subset of one or several bands included in the file.
These can be specified either as integer indices or as a character vector if bands are named.

• "cell" can be used to return data for a subset of cells. Note that integer indices start counting
at 1, whereas character indices start counting at the value of firstcell (usually 0).

Value

An LPJmLData object.

read_meta 41

Examples

Not run:
First case: meta file. Reads meta information from "my_file.json" and
data from binary file linked in "my_file.json". Normally does not require
any additional arguments.
my_data <- read_io("my_file.json")

Suppose that file data has two bands named "wheat" and "rice". `band_names`
are included in the JSON meta file. Select only the "wheat" band during
reading and discard the "rice" band. Also, read only data for years
1910-1920.
my_data_wheat <- read_io(

"my_file.json",
subset = list(band = "wheat", year = as.character(seq(1910, 1920)))

)

Read data from clm file. This includes a header describing the file
structure.
my_data_clm <- read_io("my_file.clm")

Suppose that "my_file.clm" has two bands containing data for "wheat" and
"rice". Assign names to them manually since the header does not include a
`band_names` attribute.
my_data_clm <- read_io("my_file.clm", band_names = c("wheat", "rice"))

Once `band_names` are set, subsetting by name is possible also for
file_type = "clm"
my_data_wheat <- read_io(

"my_file.clm",
band_names = c("wheat", "rice"),
subset = list(band = "wheat", year = as.character(seq(1910, 1920)))

)

Read data from raw binary file. All information about file structure needs
to be supplied. Use default values except for nyear (1 by default), and
nbands (also 1 by default).
my_data <- read_io("my_file.bin", nyear = 100, nbands = 2)

Supply band_names to be able to subset by name
my_data_wheat <- read_io(

"my_file.bin",
band_names = c("wheat", "rice"), # length needs to correspond to `nbands`
subset = list(band = "wheat", year = as.character(seq(1910, 1920))),
nyear = 100,
nbands = 2,

)

End(Not run)

read_meta Read an LPJmL meta file or binary file header

42 run_lpjml

Description

Reads a meta JSON file or the header of a binary LPJmL input or output file.

Usage

read_meta(filename, ...)

Arguments

filename Character string representing path (if different from current working directory)
and filename.

... Additional arguments passed to read_header if header file is read.

Value

An LPJmLMetaData object.

Examples

Not run:
meta <- read_meta(filename = "mpft_npp.bin.json")

meta$sim_name
[1] "LPJmL Run"

meta$firstcell
[1] 27410

meta$band_names[1]
[1] "tropical broadleaved evergreen tree"

End(Not run)

run_lpjml Run LPJmL model

Description

Runs LPJmL using "config_*.json" files written by write_config(). write_config() returns
a tibble that can be used as an input (see x). It contains the details to run single or multiple (depen-
dent/subsequent) model runs.

run_lpjml 43

Usage

run_lpjml(
x,
model_path = ".",
sim_path = NULL,
run_cmd = "srun --propagate",
parallel_cores = 1,
write_stdout = FALSE,
raise_error = TRUE,
output_path = NULL

)

Arguments

x A tibble with at least one column named "sim_name". Each simulation gets a
separate row. Optional run parameters are "order" and "dependency" which
are used for subsequent simulations (see details). write_config() returns a
tibble in the required format. OR provide a character string (vector) with the file
name of one or multiple generated configuration file(s).

model_path Character string providing the path to LPJmL (equal to LPJROOT environment
variable). Defaults to "."

sim_path Character string defining path where all simulation data are written, including
output, restart and configuration files. If NULL, model_path is used. See also
write_config

run_cmd Character string defining the command used to execute lpjml (see details). De-
faults to "srun –propagate" (compute ondes of old cluster at PIK). Change to
"mpirun" for HPC2024 at PIK.

parallel_cores Integer defining the number of available CPU cores/nodes for parallelization.
Defaults to 1 (no parallelization). Please note that parallelization is only sup-
ported for SLURM jobs and not for interactive runs.

write_stdout Logical. If TRUE, stdout as well as stderr files are written. If FALSE (default),
these are printed instead. Within a SLURM job write_stdout is automatically
set to TRUE.

raise_error Logical. Whether to raise an error if sub-process has non-zero exit status. De-
faults to TRUE.

output_path Argument is deprecated as of version 1.0; use sim_path instead.

Details

x: A tibble for x that has been generated by write_config() and can look like the following
examples can supplied:

sim_name
scen1_spinup
scen2_transient

44 run_lpjml

To perform subsequent or rather dependent runs the optional run parameter "dependency" needs to
be provided within the initial tibble supplied as param to write_config().

sim_name order dependency
scen1_spinup 1 NA
scen2_transient 2 scen1 _spinup

As a shortcut it is also possible to provide the config file "config_*.json" as a character string or
multiple config files as a character string vector directly as the x argument to run_lpjml.
Also be aware that the order of the supplied config files is important (e.g. make sure the spin-up run
is run before the transient one).

run_cmd: The run_cmd argument is used to define the command to execute LPJmL. This is needed
because the LPJmL executable can not directly be used on all machines. Which command has to be
used depends on the software installed. Further information on this can be found in the INSTALL
file of LPJmL. To determine the correct command, check the lpj_submit.sh file in the bin direc-
tory of LPJmL. Using PIK infrastrucure the command is srun for the hpc2015 and mpirun for the
hpc2024. To facilitate usage on the interactive (login) nodes, no command is needed for hpc2015.
For the hpc2024 the command remains mpirun (in these cases run_lpjml adjusts run_cmd accord-
ingly).

Value

See x, extended by columns "type", "job_id" and "status".

Examples

Not run:
library(tibble)

model_path <- "./LPJmL_internal"
sim_path <-"./my_runs"

Basic usage
my_params1 <- tibble(

sim_name = c("scen1", "scen2"),
startgrid = c(27410, 27410),
river_routing = c(FALSE, FALSE),
random_seed = c(42, 404),
`pftpar[[1]]$name` = c("first_tree", NA),
`param$k_temp` = c(NA, 0.03),
new_phenology = c(TRUE, FALSE)

)

config_details1 <- write_config(my_params1, model_path, sim_path)

run_details1 <- run_lpjml(
x = config_details1,
model_path = model_path,
sim_path = sim_path

run_lpjml 45

)

run_details1
sim_name job_id status
<chr> <int> <chr>
1 scen1 NA run
2 scen2 NA run

With run parameters dependency and order being set (also less other
parameters than in previous example)
my_params2 <- tibble(

sim_name = c("scen1", "scen2"),
startgrid = c(27410, 27410),
river_routing = c(FALSE, FALSE),
random_seed = c(42, 404),
dependency = c(NA, "scen1_spinup")

)

config_details2 <- write_config(my_params2, model_path, sim_path)

run_details2 <- run_lpjml(config_details2, model_path, sim_path)

run_details2
sim_name order dependency type job_id status
<chr> <dbl> <chr> <chr> <chr> <chr>
1 scen1_spinup 1 NA simulation NA run
2 scen1_transient 2 scen1_spinup simulation NA run

Same but by using the pipe operator
library(magrittr)

run_details2 <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = as.integer(c(1, 42)),
dependency = c(NA, "scen1_spinup")

) %>%
write_config(model_path, sim_path) %>%
run_lpjml(model_path, sim_path)

Shortcut approaches
run_details3 <- run_lpjml(

x = "./config_scen1_transient.json",
model_path = model_path,
sim_path = sim_path

)

run_details4 <- run_lpjml(
c("./config_scen1_spinup.json", "./config_scen1_transient.json"),
model_path,
sim_path

46 set_header_item

)

End(Not run)

set_header_item Set information in an LPJmL input (or output) file header

Description

Convenience function to set information in a header object as returned by read_header() or
create_header(). One or several

Usage

set_header_item(header, ...)

Arguments

header An LPJmL file header as returned by read_header() or create_header().

... Named header items to set. Can be one or several of ’name’, ’version’, ’order’,
’firstyear’, ’nyear’, ’firstcell’, ’ncell’, ’nbands’, ’cellsize_lon’, ’scalar’, ’cell-
size_lat’, ’datatype’, ’nstep’, ’timestep’, ’endian’. Parameter ’verbose’ can be
used to control verbosity, as in create_header().

Value

Header header where header items supplied through the ellipsis have been changed.

See Also

• create_header() for creating headers from scratch and for a more detailed description of the
LPJmL header format.

• read_header() for reading headers from files.

Examples

header <- create_header(
name = "LPJGRID",
version = 3,
order = 1,
firstyear = 1901,
nyear = 1,
firstcell = 0,
ncell = 67420,
nbands = 2,
cellsize_lon = 0.5,

submit_lpjml 47

scalar = 1.0,
cellsize_lat = 0.5,
datatype = 3,
nstep = 1,
timestep = 1,
endian = .Platform$endian,
verbose = TRUE

)

header
$name
[1] "LPJGRID"
#
$header
version order firstyear nyear firstcell ncell
3.0 1.0 1901.0 1.0 0.0 67420.0
nbands cellsize_lon scalar cellsize_lat datatype nstep
2.0 0.5 1.0 0.5 3.0 1.0
timestep
1.0
#
$endian
[1] "little"

Change number of cells to 1
set_header_item(header = header, ncell = 1)
$name
[1] "LPJGRID"
#
$header
version order firstyear nyear firstcell ncell
3.0 1.0 1901.0 1.0 0.0 1.0
nbands cellsize_lon scalar cellsize_lat datatype nstep
2.0 0.5 1.0 0.5 3.0 1.0
timestep
1.0
#
$endian
[1] "little"

submit_lpjml Submit LPJmL model simulation to SLURM

Description

LPJmL simulations are submitted to SLURM using "config*.json" files written by write_config().
write_config() returns a tibble that can be used as an input (see x). It serves the details to submit
single or multiple (dependent/subsequent) model simulations.

48 submit_lpjml

Usage

submit_lpjml(
x,
model_path,
sim_path = NULL,
group = "",
sclass = "short",
ntasks = 256,
wtime = "",
blocking = "",
constraint = "",
slurm_options = list(),
no_submit = FALSE,
output_path = NULL

)

Arguments

x A tibble with at least one column named "sim_name". Each simulation gets a
separate row. An optional run parameter "dependency" is used for subsequent
simulations (see details). write_config() returns a tibble in the required for-
mat. OR provide a character string (vector) with the file name of one or multiple
generated config file(s).

model_path Character string providing the path to LPJmL (equal to LPJROOT environment
variable).

sim_path Character string defining path where all simulation data are written, including
output, restart and configuration files. If NULL, model_path is used. See also
write_config

group Character string defining the user group for which the job is submitted.

sclass Character string defining the job classification. Available options at PIK: c("short",
"medium", "long", "priority", "standby", "io") More information at https:
//www.pik-potsdam.de/en. Defaults to "short".

ntasks Integer defining the number of tasks/threads. More information at https://
www.pik-potsdam.de/en and https://slurm.schedmd.com/sbatch.html. De-
faults to 256.

wtime Character string defining the time limit. Setting a lower time limit than the
maximum runtime for sclass can reduce the wait time in the SLURM job
queue. More information at https://www.pik-potsdam.de/en and https:
//slurm.schedmd.com/sbatch.html.

blocking Integer defining the number of cores to be blocked. More information at https:
//www.pik-potsdam.de/en and https://slurm.schedmd.com/sbatch.html.

constraint Character string defining constraints for node selection. Use constraint =
"haswell" to request nodes of the type haswell with 16 cores per node, constraint
= "broadwell" to request nodes of the type broadwell CPUs with 32 cores
per node or constraint = "exclusive" to reserve all CPUs of assigned nodes

https://www.pik-potsdam.de/en
https://www.pik-potsdam.de/en
https://www.pik-potsdam.de/en
https://www.pik-potsdam.de/en
https://slurm.schedmd.com/sbatch.html
https://www.pik-potsdam.de/en
https://slurm.schedmd.com/sbatch.html
https://slurm.schedmd.com/sbatch.html
https://www.pik-potsdam.de/en
https://www.pik-potsdam.de/en
https://slurm.schedmd.com/sbatch.html

submit_lpjml 49

even if less are requested by ntasks. Using exclusive should prevent inter-
ference of other batch jobs with LPJmL. More information at https://www.
pik-potsdam.de and https://slurm.schedmd.com/sbatch.html.

slurm_options A named list of further arguments to be passed to sbatch. E.g. list(mail-user =
"max.mustermann@pik-potsdam.de") More information at https://www.pik-potsdam.
de and https://slurm.schedmd.com/sbatch.html

no_submit Logical. Set to TRUE to test if x set correctly or FALSE to actually submit job to
SLURM.

output_path Argument is deprecated as of version 1.0; use sim_path instead.

Details

A tibble for x that has been generated by write_config() and can look like the following examples
can supplied:

sim_name
scen1_spinup
scen2_transient

To perform subsequent or rather dependent simulations the optional run parameter "dependency"
needs to be provided within the initial tibble supplied as param to write_config().

sim_name dependency
scen1_spinup NA
scen2_transient scen1 _spinup

To use different SLURM settings for each run the optional SLURM options "sclass", "ntasks",
"wtime", "blocking"orconstraintcan also be supplied to the initial \link[tibble]{tibble} supplied asparam to [write_config()]. These overwrite the (default) SLURM arguments (sclass, ntasks, wtime, block-
ingor constraint) supplied to submit_lpjml.

sim_name dependency wtime
scen1_spinup NA "8:00:00"
scen2_transient scen1 _spinup "2:00:00"

As a shortcut it is also possible to provide the config file "config_*.json" as a character string or
multiple config files as a character string vector directly as the x argument to submit_lpjml.
With this approach, run parameters or SLURM options cannot be taken into account.

Value

See x, extended by columns "type", "job_id" and "status".

https://www.pik-potsdam.de
https://www.pik-potsdam.de
https://slurm.schedmd.com/sbatch.html
https://www.pik-potsdam.de
https://www.pik-potsdam.de
https://slurm.schedmd.com/sbatch.html

50 submit_lpjml

Examples

Not run:
library(tibble)

model_path <- "./LPJmL_internal"
sim_path <-"./my_runs"

Basic usage
my_params <- tibble(
sim_name = c("scen1", "scen2"),
random_seed = as.integer(c(42, 404)),
`pftpar[[1]]$name` = c("first_tree", NA),
`param$k_temp` = c(NA, 0.03),
new_phenology = c(TRUE, FALSE)

)

config_details <- write_config(my_params, model_path, sim_path)

run_details <- submit_lpjml(
x = config_details,
model_path = model_path,
sim_path = sim_path

)

run_details
sim_name job_id status
<chr> <int> <chr>
1 scen1 21235215 submitted
2 scen2 21235216 submitted

With run parameter dependency and SLURM option wtime being
set (also less other parameters than in previous example)
my_params <- tibble(

sim_name = c("scen1", "scen2"),
random_seed = as.integer(c(42, 404)),
dependency = c(NA, "scen1_spinup"),
wtime = c("8:00:00", "4:00:00"),

)

config_details2 <- write_config(my_params2, model_path, sim_path)

run_details2 <- submit_lpjml(config_details2, model_path, sim_path)

run_details2
sim_name order dependency wtime type job_id status
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>
1 scen1_spinup 1 NA 8:00:00 simulation 22910240 submitted
2 scen1_transient 2 scen1_spinup 4:00:00 simulation 22910241 submitted

subset.LPJmLData 51

Same but by using the pipe operator
library(magrittr)

run_details <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = as.integer(c(1, 42)),
dependency = c(NA, "scen1_spinup"),
wtime = c("8:00:00", "4:00:00"),

) %>%
write_config(model_path, sim_path) %>%
submit_lpjml(model_path, sim_path)

Shortcut approach
run_details <- submit_lpjml(

x = "./config_scen1_transient.json",
model_path = model_path,
sim_path = sim_path

)

run_details <- submit_lpjml(
c("./config_scen1_spinup.json", "./config_scen1_transient.json"),
model_path,
sim_path

)

End(Not run)

subset.LPJmLData Subset an LPJmLData object

Description

Function to extract a subset of the full data in an LPJmLData object by applying selections along
one or several of its dimensions.

Usage

S3 method for class 'LPJmLData'
subset(x, ...)

Arguments

x An LPJmLData object

... One or several key-value combinations where keys represent the dimension
names and values represent the requested elements along these dimensions. Sub-
sets may either specify integer indices, e.g. cell = c(27411:27416), band =

52 summary.LPJmLData

-c(14:16, 19:32), or character vectors if the dimension has a dimnames at-
tribute, e.g. band = c("rainfed rice", "rainfed maize").\ Coordinate pairs
of individual cells can be selected by providing a list or tibble in the form of
coords = list(lon = ..., lat =...). Coordinate values need to be supplied
as character vectors. The argument can also be called coordinates. When co-
ordinates are supplied as character vectors to subset either along the lon or lat
dimension or to subset by coordinate pair, the function matches the grid cells
closest to the supplied coordinate value.

Value

An LPJmLData object with dimensions resulting from the selection in subset. Meta data are up-
dated as well.

Examples

Not run:

vegc <- read_io(filename = "./vegc.bin.json")

Subset cells by index
subset(vegc, cell = seq(27410, 27415))
[...]
$data |>
dimnames() |>
.$cell "27409" "27410" "27411" "27412" "27413" "27414"
.$time "1901-12-31" "1902-12-31" "1903-12-31" "1904-12-31" ...
.$band "1"
[...]

Subset time by character vector
subset(vegc, time = c("2001-12-31", "2002-12-31", "2003-12-31"))
[...]
$data |>
dimnames() |>
.$cell "0" "1" "2" "3" ... "67419"
.$time "2001-12-31" "2002-12-31" "2003-12-31"
.$band "1"
[...]

End(Not run)

summary.LPJmLData LPJmLData object summary

Description

Function to get the summary of the data array of an LPJmLData object. See also summary.

transform 53

Usage

S3 method for class 'LPJmLData'
summary(object, ...)

Arguments

object LPJmLData object

... Further arguments:

• dimension for which a summary is printed for every element (in style of
matrix summary). Default is dimension = "band". Choose from available
dimensions like "time" or "cell".

• subset list of array dimension(s) as name/key and corresponding subset
vector as value, e.g. list(cell = c(27411:27415). More information at
subset.LPJmLData().

• cutoff (logical) If TRUE summary for dimension elements > 16 are cut off.
• Additional arguments to be passed on to summary.

Value

Summary for object of class matrix (see summary) for selected dimension(s) and if defined subset.

transform Transform an LPJmLData object

Description

Function to transform an LPJmLData data object into another space or another time format. Combi-
nations of space and time formats are also possible.

Usage

transform(x, to)

Arguments

x An LPJmLData object.

to A character vector defining space and/or time format into which the corre-
sponding data dimensions should be transformed. Choose from space formats
c("cell", "lon_lat") and time formats c("time","year_month_day").

Value

An LPJmLData object in the selected format.

54 write_config

Examples

Not run:

runoff <- read_io(filename = "runoff.bin.json",
subset = list(year = as.character(1991:2000)))

Transform into space format "lon_lat". This assumes a "grid.bin.json" file
is present in the same directory as "runoff.bin.json".
transform(runoff, to = "lon_lat")
[...]
$data |>
dimnames() |>
.$lat "-55.75" "-55.25" "-54.75" "-54.25" ... "83.75"
.$lon "-179.75" "-179.25" "-178.75" "-178.25" ... "179.75"
.$time "1991-01-31" "1991-02-28" "1991-03-31" "1991-04-30" ...
.$band "1"
[...]

Transform time format from a single time dimension into separate dimensions
for years, months, and days. Dimensions for time steps not present in the
data are omitted, i.e. no "day" dimension for monthly data.
transform(runoff, to = "year_month_day")
[...]
$data |>
dimnames() |>
.$lat "-55.75" "-55.25" "-54.75" "-54.25" ... "83.75"
.$lon "-179.75" "-179.25" "-178.75" "-178.25" ... "179.75"
.$month "1" "2" "3" "4" ... "12"
.$year "1991" "1992" "1993" "1994" ... "2000"
.$band "1"
[...]

End(Not run)

write_config Write LPJmL config files (JSON)

Description

Requires a tibble (modern data.frame class) in a specific format (see details & examples) to write
the model configuration file "config_*.json". Each row in the tibble corresponds to a model run.
The generated "config_*.json" is based on a cjson file (e.g. "lpjml_config.cjson").

Usage

write_config(
x,
model_path,

write_config 55

sim_path = NULL,
output_list = c(),
output_list_timestep = "annual",
output_format = NULL,
cjson_filename = "lpjml_config.cjson",
parallel_cores = 4,
debug = FALSE,
params = NULL,
output_path = NULL,
js_filename = NULL

)

Arguments

x A tibble in a defined format (see details).

model_path Character string providing the path to LPJmL (equal to LPJROOT environment
variable).

sim_path Character string defining path where all simulation data are written. Also an
output, a restart and a configuration folder are created in sim_path to store
respective data. If NULL, model_path is used.

output_list Character vector containing the "id" of outputvars. If defined, only these de-
fined outputs will be written. Otherwise, all outputs set in cjson_filename will
be written. Defaults to NULL.

output_list_timestep

Single character string or character vector defining what temporal resolution the
defined outputs from output_list should have. Either provide a single char-
acter string for all outputs or a vector with the length of output_list defining
each timestep individually. Choose between "annual", "monthly" or "daily".

output_format Character string defining the format of the output. Defaults to NULL (use default
from cjson file). Options: "raw", "cdf" (NetCDF) or "clm" (file with header).

cjson_filename Character string providing the name of the main LPJmL configuration file to be
parsed. Defaults to "lpjml_config.cjson".

parallel_cores Integer defining the number of available CPU cores for parallelization. Defaults
to 4.

debug logical If TRUE, the inner parallelization is switched off to enable tracebacks and
all types of error messages. Defaults to FALSE.

params Argument is deprecated as of version 1.0; use x instead.

output_path Argument is deprecated as of version 1.0; use sim_path instead.

js_filename Argument is deprecated as of version 1.3; use cjson_filename instead.

Details

Supply a tibble for x, in which each row represents a configuration (config) for an LPJmL simula-
tion.
Here a config refers to a precompiled "lpjml_config.cjson" file (or file name provided as cjson_filename

56 write_config

argument) which already contains all the information from the mandatory cjson files. The precom-
pilation is done internally by write_config().
write_config() uses the column names of param as keys for the config json using the same syntax
as lists, e.g. "k_temp" from "param.js" can be accessed with "param$k_temp" or "param[["k_temp"]]"
as the column name. (The former point-style syntax - "param.k_temp" - is still valid but depre-
cated)
For each run and thus each row, this value has to be specified in the tibble. If the original value
should instead be used, insert NA.
Each run can be identified via the "sim_name", which is mandatory to specify.

my_params1 <- tibble(
sim_name = c("scenario1", "scenario2"),
random_seed = c(42, 404),
`pftpar[[1]]$name` = c("first_tree", NA),
`param$k_temp` = c(NA, 0.03),
new_phenology = c(TRUE, FALSE)

)

my_params1
A tibble: 2 x 5
sim_name random_seed `pftpar[[1]]$name` `param$k_temp` new_phenology
<chr> <dbl> <chr> <dbl> <lgl>
1 scenario1 42 first_tree NA TRUE
2 scenario2 404 NA 0.03 FALSE

Simulation sequences:
To set up spin-up and transient runs, where transient runs are dependent on the spin-up(s), a pa-
rameter "dependency" has to be defined as a column in the tibble that links simulations with each
other using the "sim_name".
Do not manually set "-DFROM_RESTART" when using "dependency". The same applies for
LPJmL config settings "restart", "write_restart", "write_restart_filename", "restart_filename", which
are set automatically by this function. This way multiple runs can be performed in succession and
build a conceivably endless chain or tree.

With dependent runs.
my_params3 <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = c(42, 404),
dependency = c(NA, "scen1_spinup")
)
my_params3
A tibble: 2 x 4
sim_name random_seed order dependency
<chr> <int> <lgl> <chr>
1 scen1_spinup 42 FALSE NA
2 scen1_transient 404 TRUE scen1_spinup

SLURM options:
Another feature is to define SLURM options for each simulation (row) separately. For example,
users may want to set a lower wall clock limit (wtime) for the transient run than the spin-up run

write_config 57

to get a higher priority in the SLURM queue. This can be achieved by supplying this option as a
parameter to param.
6 options are available, namely sclass, ntasks, wtime, blocking, constraint and slurm_options.
Use as arguments for [submit_lpjml()].\cr If specified in param, they overwrite the corresponding function arguments in [submit_lpjml()‘].

my_params4 <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = c(42, 404),
dependency = c(NA, "scen1_spinup"),
wtime = c("8:00:00", "2:00:00")
)

my_params4
A tibble: 2 x 5
sim_name random_seed order dependency wtime
<chr> <int> <lgl> <chr> <chr>
1 scen1_spinup 42 FALSE NA 8:00:00
2 scen1_transient 404 TRUE scen1_spinup 2:00:00

Use of macros:
To set a macro (e.g. "MY_MACRO" or "CHECKPOINT") provide it as a column of the tibble as
you would do with a flag in the shell: "-DMY_MACRO" "-DCHECKPOINT".
Wrap macros in backticks or tibble will raise an error, as starting an object definition with "-" is
not allowed in R.

my_params2 <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = c(42, 404),
`-DMY_MACRO` = c(TRUE, FALSE),

)

my_params2
A tibble: 2 x 3
sim_name random_seed `-DMY_MACRO`
<chr> <int> <lgl>
1 scen1_spinup 42 TRUE
2 scen1_transient 404 FALSE

In short:

• write_config() creates subdirectories within the sim_path directory
– "./configurations" to store the config files.
– "./output" to store the output within subdirectories for each sim_name.
– "./restart" to store the restart files within subdirectories for each sim_name.

• The list syntax (e.g. pftpar[[1]]$name) allows to create column names and thus keys for
accessing values in the config json.

• The column "sim_name" is mandatory (used as an identifier).
• The run parameter "dependency" is optional but enables interdependent consecutive runs

using submit_lpjml().

58 write_config

• SLURM options in param allow to use different values per run.
• If NA is specified as cell value the original value is used.
• R booleans/logical constants TRUE and FALSE are to be used for boolean parameters in the

config json.
• Value types need to be set correctly, e.g. no strings where numeric values are expected.

Value

tibble with at least one column named "sim_name". Run parameters "order" and "dependency"
are included if defined in x. tibble in this format is required for submit_lpjml().

Examples

Not run:
library(tibble)

model_path <- "./LPJmL_internal"
sim_path <-"./my_runs"

Basic usage
my_params <- tibble(

sim_name = c("scen1", "scen2"),
random_seed = c(12, 404),
`pftpar[[1]]$name` = c("first_tree", NA),
`param$k_temp` = c(NA, 0.03),
new_phenology = c(TRUE, FALSE)

)

config_details <- write_config(
x = my_params,
model_path = model_path,
sim_path = sim_path

)

config_details
A tibble: 2 x 1
sim_name
<chr>
1 scen1
2 scen2

Usage with dependency
my_params <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = c(42, 404),
dependency = c(NA, "scen1_spinup")

)

config_details <- write_config(
x = my_params,
model_path = model_path,

write_header 59

sim_path = sim_path
)

config_details
A tibble: 2 x 3
sim_name order dependency
<chr> <dbl> <chr>
1 scen1_spinup 1 NA
2 scen1_transient 2 scen1_spinup

my_params <- tibble(
sim_name = c("scen1_spinup", "scen1_transient"),
random_seed = c(42, 404),
dependency = c(NA, "scen1_spinup"),
wtime = c("8:00:00", "2:00:00")

)

config_details <- write_config(
x = my_params,
model_path = model_path,
sim_path = sim_path

)

config_details
A tibble: 2 x 4
sim_name order dependency wtime
<chr> <dbl> <chr> <chr>
1 scen1_spinup 1 NA 8:00:00
2 scen1_transient 2 scen1_spinup 2:00:00

End(Not run)

write_header Write LPJmL header object to an LPJmL input (or output) file

Description

Write an LPJmL clm header to a file. The header has to be a list following the structure returned by
read_header() or create_header(). The function will fail if the output file exists already unless
overwrite is set to TRUE.

Usage

write_header(filename, header, overwrite = FALSE)

60 write_header

Arguments

filename Filename to write header into.

header The header to be written.

overwrite Whether to overwrite an existing output file (default FALSE).

Value

Returns filename invisibly.

See Also

• create_header() for creating headers from scratch and for a more detailed description of the
LPJmL header format.

• read_header() for reading headers from files.

Examples

Not run:
header <- read_header(filename = "old_filename.clm")
write_header(

filename = "new_filename.clm",
header = header,
overwrite = FALSE

)

End(Not run)

Index

add_grid, 3, 25
add_grid(), 9, 10, 25, 28
array, 5, 6, 24, 25
as_array, 5
as_array(), 26
as_header, 6
as_header(), 31
as_list, 7
as_list(), 29, 31
as_rast (as_terra), 10
as_raster, 8
as_raster(), 24, 26, 28
as_SpatRaster (as_terra), 10
as_terra, 10
as_terra(), 26, 28
as_tibble(), 24, 26
as_tibble.LPJmLData, 11
asub, 4

brick, 8, 9, 26

calc_cellarea, 12
check_config, 13
create_header, 14
create_header(), 6, 7, 21–23, 31, 37, 46, 59,

60

data.frame, 11, 26, 54
detect_io_type, 17
dim, 26
dim.LPJmLData, 18
dimnames.LPJmLData, 18
dimnames.LPJmLData(), 27

extent, 34

find_varfile, 19

get_cellindex, 19
get_datatype, 21
get_header_item, 23

get_headersize, 22
get_headersize(), 21

length, 26
length.LPJmLData, 24
list, 7, 8, 31
list.files(), 19
LPJmLData, 3–6, 8–12, 18, 24, 24, 28, 34, 40,

51–53
LPJmLGridData, 28, 37
lpjmlkit (lpjmlkit-package), 3
lpjmlkit-package, 3
lpjmlkit::LPJmLData, 28
LPJmLMetaData, 6–8, 24, 29, 29, 42

make_lpjml, 33

plot, 34
plot(), 28
plot.LPJmLData, 34
plot.LPJmLData(), 24, 26
print, 27, 29, 31
print(), 24

rast, 10, 26
raster, 8, 9, 26
read_config, 35
read_grid, 36
read_header, 37, 42
read_header(), 16, 21–23, 46, 59, 60
read_input (read_io), 38
read_io, 36, 38
read_io(), 3, 4, 24, 29, 30
read_meta, 41
read_meta(), 29
read_output (read_io), 38
readBin(), 21
run, 33
run_lpjml, 42

set_header_item, 46

61

62 INDEX

submit_lpjml, 47
submit_lpjml(), 57, 58
subset(), 20
subset.LPJmLData, 51
subset.LPJmLData(), 5, 9–11, 25, 31, 34, 53
summary, 52, 53
summary.LPJmLData, 52
summary.LPJmLData(), 24

tibble, 11, 26, 43, 44, 48, 49, 54–58
transform, 53
transform(), 25

write_config, 13, 43, 48, 54
write_config(), 13, 42–44, 47–49, 56
write_header, 59
write_header(), 14, 16, 37

	lpjmlkit-package
	add_grid
	asub
	as_array
	as_header
	as_list
	as_raster
	as_terra
	as_tibble.LPJmLData
	calc_cellarea
	check_config
	create_header
	detect_io_type
	dim.LPJmLData
	dimnames.LPJmLData
	find_varfile
	get_cellindex
	get_datatype
	get_headersize
	get_header_item
	length.LPJmLData
	LPJmLData
	LPJmLGridData
	LPJmLMetaData
	make_lpjml
	plot.LPJmLData
	read_config
	read_grid
	read_header
	read_io
	read_meta
	run_lpjml
	set_header_item
	submit_lpjml
	subset.LPJmLData
	summary.LPJmLData
	transform
	write_config
	write_header
	Index

