Package: lucode2 (via r-universe)

September 6, 2024

Type Package

Title Code Manipulation and Analysis Tools
Version 0.47.10

Date 2024-08-07

Description A collection of tools which allow to manipulate and
analyze code.

License BSD_2 clause + file LICENSE

URL https://github.com/pik-piam/lucode2,
https://doi.org/10.5281/zenodo.4389418

BugReports https://github.com/pik-piam/lucode2/issues

Imports callr, citation (>= 0.11.3), data.table, desc, devtools,
dplyr, lintr (>= 3.1.0), rlang, tools, usethis (>=2.1.0),
withr, yaml

Suggests covr, gdx, gdxrrw, gert, ggplot2, knitr, lusweave, magclass,
poorman, renv, rmarkdown, styler, testthat

Encoding UTF-8

LazyData no

RoxygenNote 7.3.2

Config/testthat/parallel true

Config/testthat/edition 3

Config/testthat/start-first checkRequiredPackages, updateRepo
Config/Keywords tool

Repository https://pik-piam.r-universe.dev

RemoteUrl https://github.com/pik-piam/lucode2
RemoteRef HEAD

RemoteSha ¢514cb0206e883d89fa425f38fd2c696d91ecf34

https://github.com/pik-piam/lucode2
https://doi.org/10.5281/zenodo.4389418
https://github.com/pik-piam/lucode2/issues

2 Contents

Contents
addEOF e 3
addGitHubActions 4
autoFormat 5
buildLibrary 6
check e 7
checkRepoUpToDate 9
checkRequiredPackages 9
checkup L e 10
check Versions 11
conditionalCopy 11
EPIINE e e e e 12
eprint_list e e e e e e 12
EXIraCt_argUments v v v v v e e e e e e e e e e e e e e e e e e 13
findCoupledruns L 14
findDeps 15
findIterations L 15
fixBuildLibraryMergeConflict L 16
fixfile e 17
functionHeaderDefaults o 17
getClusterLoad e 18
getFilesToLint 18
getPackageAuthorso 19
getScenNames 20
gitAuthors 20
incrementVersion oo e e e 21
isVersionUpdated 21
lint . . o 22
lintrRules e 23
loadBuildLibraryConfig 24
manipulateConfig 24
manipulateFile 25
memCheck 26
MergestatiStics oo e e e 27
package2readme e e e e 28
packagelnfo L e e 28
path . . e e e 29
piamPackages L. 30
produce_miSsing_rePorts u i i e e e e 30
readATrgs oL e 31
readRuntime L 32
removeEOF e 33
TENAME_SCENATIO . . « « . v v v v e e ettt e e e e e e e e e 34
rmAllbut L e 34
TUNSEALISLICS o L e e e e e e e e 35
sendmail 36

setup_infoo 37

addEOF 3
setwd2 38
snakeToCamel 38
SystemCommandAvailable, 39
testPackageo 39
updateRepo 40
validationkey 41
validkey L 42
verifyCheck 42
verifyLinter e 43
verifyTests 43

Index 45

addEOF add EOF comment

Description

Add EOF text to all files in the code in order to ease debugging

Usage

addEQOF (path = ".", filetypes = c("inc”", "prn"”, "gms"))

Arguments
path path to the main folder of the model
filetypes file types the function should be applied to
Author(s)

Anastasis Giannousakis

See Also

removeEOF

Examples

Not run:
addEOF ()

End(Not run)

4 addGitHubActions

addGitHubActions addGitHubActions

Description

This function adds a standard Github action workflow called "check.yaml" to the project which
runs lucode2::check(), checks the validation key, and creates a coverage report using codecov. This
file is overwritten automatically each time this function is run and should not be edited by hand.
Additional Github actions can be added as separate files.

Usage

addGitHubActions(lib = ".")
Arguments

lib Path to the package
Details

In addition, this function adds a codecov.yml to the repository, if not already existing. This file is
only created if missing and can be edited manually.

Author(s)

Jan Philipp Dietrich

See Also

buildLibrary

Examples

Not run:
addGitHubActions()

End(Not run)

autoFormat 5

autoFormat autoFormat

Description

Apply auto-formatting using styler::style_file to the given files. Does not change indentation.

Usage

autoFormat (
files = getFilesToLint(),
ignoreLintFreeFiles = TRUE,
lintAfterwards = TRUE

)

Arguments
files A character vector of paths to files that should be auto-formatted.
ignoreLintFreeFiles

If set to TRUE (the default) files without linter warnings are not auto-formatted.

lintAfterwards If set to TRUE (the default) return linter results for the auto-formatted files.

Author(s)

Pascal Sauer

See Also

getFilesTolLint

Examples

Not run:
lucode2: :autoFormat()

End(Not run)

6 buildLibrary

buildLibrary buildLibrary

Description

Builds R libraries. Includes checks for consistency. Find solutions to common problems at https://github.com/pik-
piam/discussions/discussions/18

Usage
buildLibrary(
lib = ".",
cran = TRUE,

updateType = NULL,
updatelLucode2 = TRUE,
autoCheckRepoUpToDate = TRUE

)
Arguments

lib Path to the package
cran If cran-like test is needed
updateType Either an integer or character string:

number string description

1 major for API breaking changes

2 (default) minor for new features or improvements

3 patch for bugfixes and corrections

4 development only for packages in development stage

0 none version has already been incremented

updatelLucode2 Update lucode? if possible and run buildLibrary with new version instead.
autoCheckRepoUpToDate
Automatically check if your repository is up to date. If FALSE the user is asked.

Details

This function is designed to help building and checking R libraries. It performs the following steps:

* Version: Determination of a new version number (Can also be defined by the user).
* Date: Determination of a the date of the build (Can also be defined by the user).

* Linter: Check for code style problems.

* R check: Check whether the library is consistent and can be built.

* Package building: Builds the .zip and .tar.gz packages under windows. Under linux, only the
.tar.gz package is built.

check

Note

The behavior of buildLibrary can be configured via the .buildLibrary file in the main folder of
the package. It uses YAML format and can contain the following entries:

ValidationKey: This entry always exists and is written automatically by buildLibrary It
confirms that the package has been successfully build via the function.

AutocreateReadme (optional): yes/no - decides whether buildLibrary automatically up-
dates the README.md file or not (default: yes)

AddInReadme (optional): Additional entries to be added to the autocreated README. Pro-
vided either in markdown format or as paths to RMarkdown (Rmd) or Markdown (md) files

AddLogoReadme (optional): Additional logo to be added to the autocreated README. Pro-
vided as path to logo in PNG format

AcceptedWarnings (optional): a list of Warnings which should be ignored by buildLibrary
(autocompletion via asterisks allowed)

AcceptedNotes (optional): a list of Notes which should be ignored by buildLibrary (auto-
completion via asterisks allowed)

allowLinterWarnings: yes/no - If set to "no" linter warnings will stop the build process.
(default: yes)

Author(s)

Jan Philipp Dietrich, Anastasis Giannousakis, Markus Bonsch, Pascal Sauer

See Also

package2readme, lint, autoFormat

Examples

Not run:
buildLibrary()

End(Not run)

check

check

Description

Builds documentation and runs checks, tests, and linter. Find solutions to common problems at
https://github.com/pik-piam/discussions/discussions/18

8 check

Usage

check(
lib = ".",
cran = TRUE,
config = loadBuildLibraryConfig(lib),
runLinter = TRUE

)
Arguments
lib Path to the package
cran If cran-like test is needed
config A configuration defining AcceptedWarnings, AcceptedNotes, and allowLinter-
Warnings. By default the .buildLibrary file is read.
runLinter Set to FALSE to skip the linter.
Details

This function builds documentation including vignettes via devtools::document(). It runs dev-
tools::check() (without tests), then in a separate clean R session it runs devtools::test(), and finally
lucode2::lint(). Before linting "lintr" config files are created if missing. The actual linter rules are
defined in lintrRules. In general undesirable functions and operators result in linter warnings,
but not in the tests and vignettes subdirectories. Warnings and notes in checks and tests are only
allowed if the given config defines them as accepted, otherwise this function will stop.

Author(s)

Jan Philipp Dietrich, Pascal Sauer

See Also

buildLibrary, lint, lintrRules

check, test

Examples

Not run:
lucode2: :check()

End(Not run)

checkRepoUpToDate 9

checkRepoUpToDate Check if repo is up to date with upstream

Description

Checks whether the local repo is up-to-date with the remote tracking branch and the default branch
of the upstream remote. Will throw an error if not up-to-date and prints a git command to update.

Usage

checkRepoUpToDate(pathToRepo = ".", autoCheckRepoUpToDate = TRUE)
Arguments

pathToRepo The path to the git repo.

autoCheckRepoUpToDate
If FALSE do not check automatically and instead just ask the user.

Author(s)

Pascal Sauer

checkRequiredPackages checkRequiredPackages

Description

Check if one or more packages are available and try to install the missing packages. Throw an error
if at least one of the required packages is still missing after the installation attempt.

Usage

checkRequiredPackages(
requiredPackages,
requiredfFor = "",
installFunction = install.packages,
readlineFunction = readline,

libPaths = .libPaths()

10 checkup

Arguments
requiredPackages
One or more names of packages that are checked using requireNamespace.
requiredFor Optional single string. What the packages are required for, usually the name of
a function.
installFunction
Optional function, defaults to install.packages. Will be called during checkRe-
quiredPackages like this: installFunction(missingPackages, libPaths[[1]]). Only
needed if the required packages are not available on CRAN or the configured
repos (getOption("repos")). In that case you might want to use something like
this: function(...) remotes::install_github("USDA-ERS/MTED-HARTt").
readlineFunction
This argument was added for testing. A function to get an answer from the user.
libPaths This argument was added for testing. Where to look for and install the required
packages.
Author(s)
Pascal Sauer
See Also
requireNamespace
Examples
Not run:
checkRequiredPackages(c("ggplot2”, "lusweave"), "lucode2::readRuntime(..., plot = TRUE)")
End(Not run)
checkup checkup

Description

Checks the current R setup for common problems and reports info such as OS and R version.

Usage
checkup()

Value

Invisibly, the report as a list.

Author(s)

Pascal Sauer

check_versions 11

check_versions Package version check tool

Description
Checks if there are CRAN-packages with the same name as those in our PIK-CRAN whose version
is newer

Usage
check_versions(mail = TRUE, test = FALSE, gitpath = NULL)

Arguments

mail whether an email notification is sent to RSE

test to test whether auto email sending works

gitpath if an email notification has to be sent out, the path to the git repo
Author(s)

Anastasis Giannousakis

conditionalCopy conditionalCopy

Description

Copy a file from lucode? into the current package.

Usage

conditionalCopy(relativePath, nameInInstExtdata = basename(relativePath))

Arguments

relativePath The destination to copy to.

nameInInstExtdata
The source file name in lucode2’s extdata, if it differs from relativePath’s base-
name.
Details

For normal packages, it will simply overwrite the given file from the corresponding file in lucode2’s
extdata. For lucode?2 itself, it instead checks if the file in extdata matches the file in the main folder.
If not, it asks if the file in extdata should be updated.

12 eprint_list

eprint extended Print

Description

An extended print command which formats information in a way that it is good to use for a log-file

Usage

eprint(var_name, envir = parent.frame())

Arguments
var_name name of the variable that should be printed as string
envir environment from which the variable should be read (by default the environment
from which the function is called)
Author(s)

Jan Philipp Dietrich, Oliver Richters

See Also

eprint_list

Examples
Not run:
a<-1:3
eprint(”a")

End(Not run)
print additional information concerning loaded configuration#i##

ePrint (extended Print) offers an extended output functionality which
allows to create easily log-files with all relevant information

eprint_list Extended list print

Description

Same as eprint, but expecting a vector with variable names

Usage

eprint_list(var_list, envir = parent.frame())

extract_arguments 13

Arguments

var_list Vector containing names of several variables that should be printed

envir environment from which the variable should be read (by default the environment
from which the function is called)
Author(s)
Jan Philipp Dietrich

See Also

eprint

Examples

a<-1:3
b <- "blub”
lucode2: ::eprint_list(c("a"”, "b"))

extract_arguments Extract arguments

Description

Extracts the value (right-hand-side) of a string of the structure "name=value" and converts it to
an appropriate format. This file also reads arguments from command line. To use this script you
have to include it by typing source("readArgs.R") in your script and call readArgs(allowed_args)
including all arguments that can be read from command line.

Usage

extract_arguments(inputArg)

Arguments

inputArg string of the structure "name=value"

Value

value the value (right-hand-side) of the string converted into an appropriate format

Author(s)
Jan Philipp Dietrich

See Also

readArgs

14 findCoupledruns

Examples
Not run:
extract_arguments(”bla=1:9")

#[11123456789

extract_arguments(”blub=3,5,7")
#[11357

extract_arguments(”ble=hallo")
[1]1 "hallo”

End(Not run)

findCoupledruns findCoupledruns

Description

Extracts scenario names from coupled runs in the given outputfolder. The scenario names will be
extracted based on the folder names of the results folders.

Usage

findCoupledruns(resultsfolder)

Arguments

resultsfolder Path to an output folder.

Value

A vector containing the names of the scenarios.

Author(s)

David Klein

findDeps 15

findDeps findDeps

Description

Find all dependencies of an R project.

Usage

findDeps(devDeps = TRUE)

Arguments

devDeps Whether development dependencies should also be checked.

Details

This is a wrapper around ‘renv::dependencies()‘ that does not report dependencies on core R pack-
ages, because these are always available.

Value

A dataframe documenting which dependency is needed where.

Author(s)

Pascal Sauer

See Also

dependencies

findIterations findlterations

Description

Collects paths to all coupled runs (iterations) in modelpath that contain runname. For each entry in
runname the paths are sorted by the modification time of the respective fulldata.gdx

Usage

findIterations(runname, modelpath = ".", latest = FALSE)

16 fixBuildLibraryMergeConflict

Arguments

runname Scenarioname or vector of scenarionames.

modelpath Path or vector of paths where iterations are searched for.

latest Logical indicating if only the latest iteration of a runname is returned.
Value

A vector containing the paths to the iterations of coupled runs.

Author(s)

David Klein

fixBuildLibraryMergeConflict
JfixBuildLibraryMergeConflict

Description

Fix merge conflicts in files auto-edited by buildLibrary (.buildlibrary, .zenodo.json, DESCRIP-
TION, README.md).

Usage

fixBuildLibraryMergeConflict(lib = ".")
Arguments

lib The path to the project with a merge conflict.
Details

The ValidationKey in .buildlibrary will be set to an empty string and the higher version number in
DESCRIPTION is used. buildLibrary needs to be run after this function to deal with the Valida-
tionKey and the merge markers in .zenodo and README.md.

fixfile

17

fixfile fixfile

Description

Fix file format of text files (e.g. line/file endings).

Usage
fixfile(f)

Arguments

f path to the file that should be fixed

Author(s)

Jan Philipp Dietrich

functionHeaderDefaults
functionHeaderDefaults

Description

used to quickly read in the default values of a function

Usage

functionHeaderDefaults(...)

Arguments

parameters that shall be assigned to the global environment of R

Value

no direct return, values are assigned to .GlobalEnv

Author(s)

Benjamin Leon Bodirsky

18 getFilesToLint

Examples

Not run:

test <- function(a = "klk", b = "kjlkv", kk = 3) {
paste(a, b, kk)

3

functionHeaderDefaults(a = "klk", b = "kjlkv", kk = 3)
print(a)

paste(a, b, kk)

End(Not run)

getClusterLoad getClusterLoad

Description
Returns information about cluster load in case that the command "sclass" is available. Otherwise, it
returns NULL

Usage
getClusterLoad()

Value
NULL, if command "sclass" is not available, otherwise returns a named vector with current load on
available partitions

Author(s)
Jan Philipp Dietrich

getFilesToLint getFilesToLint

Description

Get the R files the current git user is responsible for to pass them to the auto-formatter and/or linter.

Usage
getFilesTolLint(pathToGitRepo = ".")

Arguments

pathToGitRepo path to a git repository

getPackageAuthors 19

Details

The files of interest are identified using git via system() (and shell() for windows). All currently
untracked files and changed files (both staged and unstaged) are collected, as well as files that were
changed in non-merge commits authored by the current git user since the last version commit (a
commit where .buildLibrary was changed, presumably to increase the version number). Of those
the absolute paths to .R, .Rmd and .Rnw files are returned as a character vector.

Author(s)

Pascal Sauer

See Also

lint, autoFormat

Examples

lucode2:::getFilesTolLint()

getPackageAuthors getPackageAuthors

Description
Creates a suggestion for an Authors entry for the DESCRIPTION of a package. Suggestion is based
on author information in roxygen headers and authors are ranked based on number of mentionings.
Usage

getPackageAuthors(folder = "R")

Arguments

folder R folder of the package

Details

Please be aware that the output will most likely require some manual processing before it can be
used in the DESCRIPTION!

Author(s)

Jan Philipp Dietrich

20 gitAuthors

getScenNames getScenNames

Description

Get the scenario names (titles) of runs from the specified output folder(s).

Usage

getScenNames(dirs)
Arguments

dirs vector of paths to the used output folders.
Value

A vector containing the titles used as scenario names for e.g. plots

Author(s)

Lavinia Baumstark

gitAuthors gitAuthors

Description

Print each git author’s first name, last name, and mail address in a way that could be copy pasted
into DESCRIPTION. Please note that this list usually still needs to be carefully checked e.g. for
duplicates and cleaned.

Usage

gitAuthors()

Value

Invisibly, a data.frame with the following columns: raw, firstName, lastName, mailAdress.

Author(s)

Pascal Sauer

incrementVersion 21

incrementVersion incrementVersion

Description

Increment a version number at the specified position.

Usage

incrementVersion(currentVersion, position, deflLengths = 3)

Arguments

currentVersion The current package version as a string like "1.23.456"

position An integer defining which part of the version number will be increased. Use 1
for major version, 2 for minor, 3 for patch/bugfix, 4 for development.
defLengths An integer defining how many parts make up the resulting version number.
Value

The new version string.

Author(s)

Jan Philipp Dietrich, Anastasis Giannousakis, Markus Bonsch, Pascal Sauer

See Also
buildLibrary

Examples

lucode2:::incrementVersion("1.23.45", 3)

isVersionUpdated isVersionUpdated

Description

Checks if the version number in the DESCRIPTION file of a given package has been updated.

Usage

isVersionUpdated(
repo = "https://rse.pik-potsdam.de/r/packages/",
config = loadBuildLibraryConfig()

)

22 lint

Arguments
repo package repository to determine latest version
config A configuration defining enforceVersionUpdate. By default the .buildLibrary
file is read.
Author(s)
Falk Benke
lint lint
Description

Check the given files for linter warnings using lintr::lint.

Usage

lint(files = getFilesToLint())

Arguments
files A character vector of paths to files that should be checked by the linter. If set to
"." the whole package is linted.
Details

For files in the vignettes and tests folder less strict rules are applied, e.g. using ::: usually leads to a
linter warning, but not in vignettes/tests. Which linter rules are used depends on "lintr" config files.
check creates lintr config files that use lintrRules.

Value
A named list, where the names are the paths to the linted files and the values are lists containing the

linter warnings.

Author(s)

Pascal Sauer

See Also

getFilesTolLint, lintrRules, autoFormat, lint

lintrRules 23

Examples

Not run:
lucode2::1int()

End(Not run)

lintrRules lintrRules

Description

This function defines the rules to be used by the linter called lintr. check creates ".lintr" config files
that use this function.

Usage

lintrRules(allowUndesirable = FALSE, modification = list())

Arguments

allowUndesirable
If true it is okay to use undesirable operators (such as "«-") and undesirable (but
not deprecated) functions (such as "setwd").

modification A named list mapping linter names to NULL (removes that linter) or a corre-
sponding linter function. Will be applied to the result with utils::modifyList.
Details
To change which linters are applied for a package edit the .lintr file to use the modification argument,
see example.
Value

A named list mapping linter names to linter functions.

See Also

check, lint

Examples

Not run:
lintr::lint_dir(linters = lucode2::lintrRules())

return usual linters with a different object_name_linter and without the todo_comment_linter

snakeCaselLinter <- lintr::object_name_linter(styles = "snake_case")

lucode2: :1lintrRules(modification = list(object_name_linter = snakeCaselinter,
todo_comment_linter = NULL))

24 manipulateConfig

End(Not run)

loadBuildLibraryConfig
buildLibrary

Description

Load the build configuration from .buildLibrary. If the file does not exist it is created.

Usage

loadBuildLibraryConfig(lib = ".")
Arguments

lib Path to the package
Value

The configuration loaded from .buildLibrary as a list.

Author(s)

Jan Philipp Dietrich, Pascal Sauer

See Also

buildLibrary

manipulateConfig Replace in File

Description

Function to set configuration parameters in configuration files (e.g. default.cfg and magpie.gms).
This replacement is useful, when using R to manage different model runs at once. Please check
your results after replacement!

Usage

manipulateConfig(configFile, ...)

manipulateFile 25

Arguments
configFile a character string containing the name of the configuration file, that should be
manipulated. Supported file formats are at the moment "gms", "inc", "cfg" (R-
syntax), "php", "opt" and "cmd". Other formats are currently not supported
Variables, that should be set to new values, e.g. title="test" for default.cfg or
s_max_timesteps=10 for magpie.gms
Author(s)

Jan Philipp Dietrich, Markus Bonsch, David Klein

See Also

manipulateFile

Examples

Not run:
manipulateConfig(”config/default.cfg"”, input = "test_new_yields”, title = "yihaa", revision = 4.2)
manipulateConfig("magpie.gms", s_max_timesteps = 4, s_use_gdx = -1)

End(Not run)

manipulateFile Replace in File

Description

Function to replace a specific text string in a text file. Useful to manipulate GAMS sourcecode files.

Usage
manipulateFile(file, manipulations, perl = TRUE, ...)
Arguments
file a connection object or a character string describing the file, that should be ma-

nipulated.

manipulations A list of 2 element vectors, containing the search phrase as first element and the
replace term as second element.

perl usually set to TRUE so regular expressions in perl syntax (including backrefer-
encing) can be used. If fixed = TRUE is specified in ..., perl is set to FALSE

Further options passed to gsub

26 memCheck

Author(s)

Jan Philipp Dietrich

See Also

manipulateConfig

Examples

manipulateFile("example.txt”,list(c("bla”,"blub”),c("a","b")))

memCheck Memory usage Check

Description

Function checks memory usage and shows the biggest objects in the given environment

Usage
memCheck (
order.by = "Size",
decreasing = TRUE,
n = NULL,
envir = parent.frame(),
gc = TRUE
)
Arguments
order.by Column based on which the data should be sorted
decreasing Determines whether the values should be in an increasing or decreasing order
n Limit of number of elements that should be shown. NULL means no limit
envir Environment which should be analyzed, but default the parent environment rel-
ative to this function.
gc Determines whether the garbage collector should be executed at the end of the
function for additional information
Details

This function is based on an idea posted at stack overflow: http://stackoverflow.com/questions/1358003/tricks-
to-manage-the-available-memory-in-an-r-session

Author(s)
Jan Philipp Dietrich

mergestatistics

Examples

Not run:
memCheck ()

End(Not run)

27

mergestatistics

Merge Statistics

Description

Support function to merge run statistics which have been derived with runstatistics

Usage
mergestatistics(
dir = ".",
file = NULL,

renew = FALSE,
quickcheck = FALSE,
pattern = "x\\.[rR]da",

removeCols =

NULL,

keepCols = NULL

Arguments
dir
file

renew

quickcheck

pattern
removeCols

keepCols

Value

Path to the run statistics repository

path to an rds-file the data should be written to and from which (if existing)
already merged data can be read from

if set to TRUE the full data.table will be created again from scratch, if set to
FALSE merging will start with the existing file (if it exists) and just add missing
entries

If active, the function compares last modification dates of repository data and
and merged statistics and cancels execution in case that there is no newer file in
the data repository (assuming that merge statistics are already complete). This
is useful if this function is run frequently and execution time plays a role, but
might lead to cases in which the function is not run even if the merge statistics
are incomplete.

detection pattern for rda files that should be merged
vector of columns that will be filtered out

only these columns will be kept, if NULL all columns will be kept

A data table containing the merged run statistics or NULL in case the data was not recalculated

28 packagelnfo

Author(s)

Jan Philipp Dietrich

package2readme package2readme

Description

Creates a README.md for a R package.

Usage
package2readme(package = ".", add = NULL, logo = NULL)
Arguments
package either the path to the main folder of a package (containing a DESCRIPTION
file) or the name of the package
add a character vector with additions to the README file. Each element of the
vector can be either 1) a line of markdown code, 2) a path to a markdown file,
or 3) a path to a Rmarkdown file
logo a character string for a path to a logo file used in the title of the README file
Author(s)
Jan Philipp Dietrich
Examples

package2readme("lucode2")

packageInfo packagelnfo

Description

Function to print version number and time since last update formatted to standard output. Considers
CRAN, the RSE server, and r-universe.

Usage

packageInfo(
package,
repos = c("https://cran.rstudio.com/", "https://rse.pik-potsdam.de/r/packages/",
"https://pik-piam.r-universe.dev")

path 29

Arguments

package Package name

repos vector of package repositories in which availability of the package should be

checked

Author(s)

Jan Philipp Dietrich

path path

Description

Small function to build a consistent path-string based on folder, filename and filetype. The function
makes sure that slashes and the dot for the file ending are set correctly (you can supply your folder
name either with or without a tailing slash in it. It does not matter.

Usage
path(..., ftype = NULL)
Arguments
the folders and the file name that should be pasted to a file/folder path
ftype file type
Value

A string containing the path combined of folder, filename and filetype

Author(s)

Jan Philipp Dietrich

30 produce_missing_reports

piamPackages piamPackages

Description

Fetches the names of packages available on https://pik-piam.r-universe.dev/ui#builds

Usage

piamPackages()

Value

A character vector of names of packages available on https://pik-piam.r-universe.dev/ui#builds

produce_missing_reports
Produces the reporting mif files where they are missing

Description

For coupled runs: Searches the output folder for all existing run folders, checks which of them are
currently running on the cluster, ignores them, checks for the remaining runs whether there is a
reporting. Produces the reporting if it is missing. #

Usage

produce_missing_reports(modeldir = "./")
Arguments

modeldir Path to the main folder of REMIND or MAgPIE.
Author(s)

David Klein

readArgs 31

readArgs Read Arguments from command line

Description

Function reads arguments from command line of the structure value=content and transforms them
to R-Values, if they are called as allowed arguments.

Usage

readArgs(
.argv = commandArgs(trailingOnly = TRUE),
.envir = parent.frame(),

.flags = NULL,
.silent = FALSE
)
Arguments
arguments allowed to be read from command line (other values are ignored).
Value is set if found on command line input, nothing is done, if value is not
found.

.argv command line arguments, usually read with commandArgs, can be specified for
testing purposes

.envir environment in which the variables should be written (by default the environ-
ment from which the function is called)

.flags named vector with possible command line switches. Element names are short
flags used with one dash, corresponding elements the long form including two
dashes: c(t = "—test") will interpret "-t" in command line as "—test"

.silent boolean which allows to suppress status messages

Value

vector of activated flags, if any

Author(s)

Jan Philipp Dietrich, Oliver Richters

See Also

manipulateConfig

32 readRuntime

Examples

Create an R-file "test.R" with following code:
valuel <- "old"
value2 <- 2
value3 <- "willstaythesame”
flags <- readArgs(”valuel”, "value2"”, "value4"”, .flags = c(t = "--test”, p = "--parallel”))
message(valuel)
message (value?)
message(value3)
if ("--test” %in% flags) {
message(”"You are in test mode")
3
if ("--parallel” %in% flags) {
message("You are in parallel mode"”)

}

Open the command line and execute the following code:
Rscript test.R -t --parallel valuel=new value2=3 value3=isnotallowed

Output:

READ COMMAND LINE - ASSIGNED CONFIGURATION
valuel <- new

value2 <- 3

value4 not defined

Flags: --parallel, --test

READ COMMAND LINE - CONFIGURATION END

new
3

willstaythesame

You are in test mode

You are in parallel mode

R E E E E E E E E R

function that reads all allowed arguments from command line

readRuntime readRuntime

Description

Reads all runtime information from given experiments. The runtime is given in hours and is the
runtime of GAMS.

Usage

readRuntime(path, plot = FALSE, types = NULL, coupled = FALSE, outfname = NULL)

removeEOF

Arguments

path
plot

types

coupled

outfname

Value

33

Path to a run or a vector of paths.

Logical indicating whether the output should be plotted to a pdf with the name
runtime.pdf.

A vector of names of different types of runs which should be distinguished by
colors. The names have to be part of the folder name in order to allow the
function to map the given types to the runs.

Logical indicating if comparison plots should be added for coupled REMIND

and MAgPIE runs. TRUE automatically sets types to c("-rem-","-mag-") and
overwrites user defined types

Optional name of the pdf. If nothing is given the default "runtime" will be used.

A data frame containing the run names and runtime information in hours.

Author(s)

David Klein

removeEOF

add EOF comment

Description

remove EOF text from all files in the code

Usage

removeEQOF (path =

Arguments

path

filetypes

Author(s)

n on

, filetypes = c("inc", "prn", "gms"))

path to the main folder of the model

file types the function should be applied to

Anastasis Giannousakis

See Also

addEOF

34 rmAllbut

Examples

Not run:
removeEOF ()

End(Not run)

rename_scenario Renames the scenariofolder and the scenario contained in it

Description

Use this function to change the name of a run after it has finished. This function renames the run
folder, change the run title in the cfg and in the reporting. This can be useful if the initial name of a
run was not meaningful. However, inconsistencies will remain, since the function will NOT rename
the scenario in the list file, the gdx, and the results database.

Usage

rename_scenario(map, keep_time_stamp = FALSE)

Arguments

map Named vector, containing the new scenario names as elements and the corre-
sponding old folder names as the emelents’ names.

keep_time_stamp
Logical indicating whether timestamp of old folder name should be transferred
to new folder name or not (default = FALSE).

Author(s)
David Klein

rmAllbut rmAllbut

Description

Removes all objects except specified ones from the workspace

Usage

rmAllbut(..., list = character(), clean = TRUE)

runstatistics 35

Arguments
Objects that should be kept
list List specifying the objects to be kept. Same as in rm.
clean Boolean to specify if a gc shall be executed
Details

Helps to clean the workspace. Only objects specified in . . . survive. Specify clean =TRUE to really
free the memory.

Author(s)
Markus Bonsch

See Also

rm,1s

Examples

Create some objects
<-1

<-2

<-3

show them

1sO

delete all but b and c
rmAllbut(b, c)

0 T o

1sO)
delete all but b
test <- "b"
rmAllbut(list = test)
1sO
runstatistics Run Statistics
Description

Support function to collect run statistics.

Usage

runstatistics(file = "runstatistics.Rda", overwrite = TRUE, submit = NULL, ...)

36

Arguments
file

overwrite

submit

Value

sendmail

file name the statistics are/should be stored

boolean deciding whether entries should be overwritten, if already existing in
the file. If set to FALSE an error will be thrown in case that an overwrite is
attempted.

path to a folder the run statistics should be submitted to. As soon as the path
is set the data will be submitted, so please only set the path as soon as the run
statistics are complete

entries that should be added to the run statistics file. Standard entries are: model,
config, runtime, user, date, modelstat, version_management, revision and status.

An invisible list containing run statistics as stored in the given file

Author(s)

Jan Philipp Dietrich

Examples

f <- tempfile()

runstatistics(file = f, user = Sys.info()[["user”"]]1)
print(runstatistics(file = f))
runstatistics(file = f, submit = tempdir())

sendmail

sendmail

Description

A function that sends an automatic email with each push to a gitlab repo

Usage

sendmail(

path = NULL,
gitrepo,

file,

commitmessage,
remote = FALSE,

reset = FALSE

setup_info 37

Arguments
path path to the clone of the gitlab repo (can be NULL)
gitrepo if no path is given, the gitlab repo is needed
file absolute path to the file to be committed

commitmessage the commit message (appears in the subject line of the email that will be sent)

remote whether communication with a remote is needed
reset whether a reset of a local copy is wanted
Author(s)

Anastasis Giannousakis

setup_info Setup Info

Description
Returns a list with information about the current session (session info, used library paths and in-
stalled libraries)

Usage

setup_info()

Value

A list with information about the current session and the currently used R setup.

Author(s)

Jan Philipp Dietrich

Examples

setup_info()

38 snakeToCamel

setwd?2 setwd?2

Description

Mini function that allows you to set a directory based on a readline input. Very useful for Windows
users, as it replaces backslashes by slashes.
Usage

setwd2(return_only = FALSE)

Arguments

return_only if TRUE, the path is not changed, but the clipboard path is returned as string.

Value
if return_only=FALSE: Nothing, but the working directory is set to. Otherwise: no working direc-
tory returned, but path transformed.

Author(s)

Benjamin Leon Bodirsky

snakeToCamel snakeToCamel

Description

Convenience function to rename variables in an R file from snake to camel case.

Usage

snakeToCamel (pathToFile, ask = TRUE)

Arguments
pathToFile Path to the R source file where variables should be renamed.
ask If TRUE (default) ask before renaming a variable, otherwise always assume

"yes" as answer.

SystemCommandAvailable 39

SystemCommandAvailable
System Command Available

Description

Checks whether a system command is available (does not return an error), or not

Usage

SystemCommandAvailable(command)

Arguments

command System command to be tested

Value

Boolean indicating whether the command is available, or not

Author(s)

Jan Philipp Dietrich

Examples

SystemCommandAvailable("1s")

testPackage Test package

Description

Installs a package in a temporary library and loads that library on top of the existing one

Usage
testPackage(repo, tmpLib = tempdir(), ...)
Arguments
repo GitHub repository to install the package from
tmpLib temporary library directory where the package should be installed

additional arguments forwarded to devtools: :install_github

40 updateRepo

Author(s)

Jan Philipp Dietrich

Examples

Not run:
testPackage("git@github.com:pik-piam/lucode2”)

End(Not run)

updateRepo Update package repository

Description

Function to update an package repository. Run this function on a folder which contains packages
sources as subfolders. Packages should be managed via git in order to be updated properly. To add
a new package to the repo just checkout/clone it into this folder. The function will automatically
detect the new package and add it.

Usage
updateRepo(
path = ".",
check = TRUE,
forceRebuild = FALSE,
clean = TRUE,
skipFolders = "Archive",
repoUrl = "https://rse.pik-potsdam.de/r/packages”
)
Arguments
path Path to the repository
check Boolean deciding whether package must have been checked or not in order to

be distributed
forceRebuild Option to rebuild all packages from source
clean Option to clean repos before updating/pulling to avoid merge conflicts
skipFolders Which folders/packages should not be built.

repoUrl Url of the package repo. Will be added to DESCRIPTION files in the Repository
field.

Author(s)

Jan Philipp Dietrich, Pascal Sauer

validationkey 41

See Also

buildLibrary

validationkey validationkey

Description

Support function which creates a key out of a version date combination

Usage

validationkey(version, date)

Arguments
version Version number of the package
date Date of the package

Details

This function is used in buildLibrary to offer the package publication server an option to check
whether the package has been properly and successfully (no errors/warnings/notes) checked before
its commit.

The calculated key is not safe and can easily be reproduced, but should be complicated enough to
encourage users running the buildLibrary check properly.

Author(s)

Jan Philipp Dietrich

See Also

buildLibrary

42 verifyCheck

validkey validkey

Description

Support function which validates a key out of a version date combination

Usage

validkey(package = ".", stopIfinvalid = FALSE)
Arguments

package Path to the package

stopIfInvalid logical; whether to stop if the key is invalid.

Details

This function is used to check whether buildLibrary has been run properly and without problems
or not

Value

list with version, date and result of validation test

Author(s)

Jan Philipp Dietrich

See Also
buildLibrary

verifyCheck verifyCheck

Description
Run R CMD check completely without stopping. Then stop on errors, or unaccepted warnings and
notes.

Usage

verifyCheck(cran, acceptedWarnings, acceptedNotes)

verifyLinter 43

Arguments
cran Passed to devtools::check
acceptedWarnings

A character vector of regular expressions. A warning will result in an error
unless it matches one of these regular expressions.

acceptedNotes A character vector of regular expressions. A note will result in an error unless it
matches one of these regular expressions.

Author(s)

Pascal Sauer

verifylLinter verifyLinter

Description

Run linter and stop on linter warning unless linter warnings are allowed.

Usage

verifyLinter(allowLinterWarnings = FALSE)

Arguments
allowLinterWarnings
If FALSE (the default) will stop on linter warnings.
Author(s)

Pascal Sauer

verifyTests verifyTests

Description

Run tests and stop on error or unaccepted warning.

Usage

verifyTests(acceptedWarnings)

44 verifyTests

Arguments
acceptedWarnings
A character vector of regular expressions. A warning will result in an error
unless it matches one of these regular expressions.
Author(s)

Pascal Sauer

Index

addEOF, 3, 33
addGitHubActions, 4
autoFormat, 5, 7, 19, 22

buildLibrary, 4,6, 8, 21, 24,41, 42

check, 7, 8, 22, 23
check_versions, 11
checkRepoUpToDate, 9
checkRequiredPackages, 9
checkup, 10
conditionalCopy, 11

dependencies, 15

eprint, 12,12, 13
eprint_list, 12,12
extract_arguments, 13

findCoupledruns, 14

findDeps, 15

findIterations, 15
fixBuildLibraryMergeConflict, 16
fixfile, 17
functionHeaderDefaults, 17

gc, 35
getClusterlLoad, 18
getFilesTolint, 5, 18, 22
getPackageAuthors, 19
getScenNames, 20
gitAuthors, 20

incrementVersion, 21
isVersionUpdated, 21

lint, 7, 8, 19, 22,22, 23
lintrRules, 8, 22, 23
loadBuildLibraryConfig, 24
1s, 35

manipulateConfig, 24, 26, 31

45

manipulateFile, 25, 25
memCheck, 26
mergestatistics, 27

package2readme, 7, 28
packageInfo, 28

path, 29

piamPackages, 30
produce_missing_reports, 30

readArgs, 13, 31
readRuntime, 32
removeEOF, 3, 33
rename_scenario, 34
requireNamespace, 10
rm, 35

rmAllbut, 34
runstatistics, 27, 35

sendmail, 36

setup_info, 37

setwd2, 38

snakeToCamel, 38
SystemCommandAvailable, 39

test, 8
testPackage, 39

updateRepo, 40

validationkey, 41
validkey, 42
verifyCheck, 42
verifylLinter, 43
verifyTests, 43

	addEOF
	addGitHubActions
	autoFormat
	buildLibrary
	check
	checkRepoUpToDate
	checkRequiredPackages
	checkup
	check_versions
	conditionalCopy
	eprint
	eprint_list
	extract_arguments
	findCoupledruns
	findDeps
	findIterations
	fixBuildLibraryMergeConflict
	fixfile
	functionHeaderDefaults
	getClusterLoad
	getFilesToLint
	getPackageAuthors
	getScenNames
	gitAuthors
	incrementVersion
	isVersionUpdated
	lint
	lintrRules
	loadBuildLibraryConfig
	manipulateConfig
	manipulateFile
	memCheck
	mergestatistics
	package2readme
	packageInfo
	path
	piamPackages
	produce_missing_reports
	readArgs
	readRuntime
	removeEOF
	rename_scenario
	rmAllbut
	runstatistics
	sendmail
	setup_info
	setwd2
	snakeToCamel
	SystemCommandAvailable
	testPackage
	updateRepo
	validationkey
	validkey
	verifyCheck
	verifyLinter
	verifyTests
	Index

