
Package: madrat (via r-universe)
August 21, 2024

Type Package

Title May All Data be Reproducible and Transparent (MADRaT) *

Version 3.13.0

Date 2024-08-21

Description Provides a framework which should improve reproducibility
and transparency in data processing. It provides functionality
such as automatic meta data creation and management,
rudimentary quality management, data caching, work-flow
management and data aggregation. * The title is a wish not a
promise. By no means we expect this package to deliver
everything what is needed to achieve full reproducibility and
transparency, but we believe that it supports efforts in this
direction.

License BSD_2_clause + file LICENSE

URL https://github.com/pik-piam/madrat,

https://doi.org/10.5281/zenodo.1115490

BugReports https://github.com/pik-piam/madrat/issues

Depends magclass (>= 5.7.0), R (>= 2.10.0)

Imports callr, digest, igraph (>= 2.0.0), Matrix, methods, pkgload,
renv, stringi, tools, utils, withr, yaml

Suggests covr, ggplot2, graphics, grDevices, knitr, rmarkdown, terra,
testthat, tibble

VignetteBuilder knitr

Config/Keywords tool

Encoding UTF-8

LazyData no

RoxygenNote 7.3.2

Repository https://pik-piam.r-universe.dev

RemoteUrl https://github.com/pik-piam/madrat

RemoteRef HEAD

RemoteSha ff3c9f8160d6ddc444002fd3bc17d7a0eccaba99

1

https://github.com/pik-piam/madrat
https://doi.org/10.5281/zenodo.1115490
https://github.com/pik-piam/madrat/issues

2 Contents

Contents
madrat-package . 3
addMapping . 4
cacheArgumentsHash . 5
cacheCleanup . 6
cacheCopy . 7
cacheGet . 7
cacheName . 8
cachePut . 9
calcOutput . 10
calcTauTotal . 13
compareData . 14
compareMadratOutputs . 14
convertTau . 15
downloadSource . 16
findBottlenecks . 18
fingerprint . 18
fullEXAMPLE . 19
getCalculations . 20
getCode . 21
getConfig . 22
getDependencies . 23
getFlags . 24
getISOlist . 25
getLinkFunction . 26
getLocation . 26
getMadratGraph . 27
getMadratInfo . 28
getMadratMessage . 28
getMainfolder . 29
getNonDefaultArguments . 30
getSourceFolder . 31
getSources . 31
initializeConfig . 32
installedMadratUniverse . 33
isWrapperActive . 34
madapply . 34
madlapply . 35
madratAttach . 35
madTempDir . 36
metadataGFZ . 37
prepFunctionName . 37
pucAggregate . 38
putMadratMessage . 39
readSource . 40
readTau . 42
redirect . 43

madrat-package 3

redirectSource . 44
redirectTau . 45
regionscode . 45
resetMadratMessages . 46
retrieveData . 47
robustOrder . 49
setConfig . 49
toolAggregate . 52
toolCodeLabels . 55
toolConditionalReplace . 56
toolConvertMapping . 56
toolCountry2isocode . 57
toolCountryFill . 58
toolendmessage . 59
toolFillWithRegionAvg . 60
toolFillYears . 61
toolGetMapping . 62
toolISOhistorical . 63
toolManualDownload . 64
toolNAreplace . 65
toolOrderCells . 65
toolSplitSubtype . 66
toolstartmessage . 67
toolSubtypeSelect . 68
toolTimeAverage . 69
toolTimeSpline . 69
toolXlargest . 70
vcat . 71
visualizeDependencies . 72
withMadratLogging . 73

Index 74

madrat-package May All Data be Reproducible And Transparent (madrat) *

Description

Package provides a basic framework which should improve reproducibility and transparency in
data processing. It provides functionality such as automatic meta data creation and management,
rudimentary quality management, data caching, work-flow management an data aggregation.

Details

* The title is a wish not a promise. By no means we expect this package to deliver everything what
is needed to achieve full reproducibility and transparency, but we believe that it supports efforts in
this direction.

4 addMapping

Author(s)

Maintainer: Jan Philipp Dietrich <dietrich@pik-potsdam.de> (ORCID) (Potsdam Institute for
Climate Impact Research)

Authors:

• Lavinia Baumstark <lavinia@pik-potsdam.de> (Potsdam Institute for Climate Impact Re-
search)

• Stephen Wirth <wirth@pik-potsdam.de> (Potsdam Institute for Climate Impact Research)
• Anastasis Giannousakis <giannou@pik-potsdam.de>
• Renato Rodrigues <Renato.Rodrigues@pik-potsdam.de> (Potsdam Institute for Climate

Impact Research)
• Benjamin Leon Bodirsky <bodirsky@pik-potsdam.de> (Potsdam Institute for Climate Im-

pact Research)
• Debbora Leip <leip@pik-potsdam.de> (Potsdam Institute for Climate Impact Research)
• Ulrich Kreidenweis <kreidenweis@pik-potsdam.de>
• David Klein <dklein@pik-potsdam.de> (Potsdam Institute for Climate Impact Research)
• Pascal Sauer <pascal.sauer@pik-potsdam.de> (Potsdam Institute for Climate Impact Re-

search)

See Also

Useful links:

• https://github.com/pik-piam/madrat

• doi:10.5281/zenodo.1115490
• Report bugs at https://github.com/pik-piam/madrat/issues

addMapping addMapping

Description

Function whichs adds another mapping to the current list of extramappings in the madrat configu-
ration (see setConfig) and stores the mapping in the mapping folder as well as output folder.

Usage

addMapping(filename, mapping = NULL)

Arguments

filename The name of the the region mapping that should added including file ending
(e.g. "regionmappingREMIND.csv"). Supported formats are currently ".csv"
and ".rds".

mapping Mapping provided as data.frame, or NULL. If a mapping is provided the data
will be written in the mapping file of the given file (potentially replacing existing
data). If NULL the mapping from the given file is used.

https://orcid.org/0000-0002-4309-6431
https://github.com/pik-piam/madrat
https://doi.org/10.5281/zenodo.1115490
https://github.com/pik-piam/madrat/issues

cacheArgumentsHash 5

Author(s)

Jan Philipp Dietrich

See Also

setConfig

Examples

Not run:
addMapping("regionmappingH12.csv")

End(Not run)

cacheArgumentsHash Tool: cacheArgumentsHash

Description

Calculate hash from given function arguments for given call

Usage

cacheArgumentsHash(call, args = NULL)

Arguments

call A function as a string or symbol. Passing a vector of functions is possible, but
is only intended for corresponding read/correct/convert functions. If multiple
functions in a vector define arguments with the same name but different default
values only the default defined in the first function is considered.

args A list of named arguments used to call the given function(s). If duplicates of
arguments exists the first occurrence of the argument will be used.

Value

A hash representing the given arguments hash for the given call. NULL, if no argument deviates
from the default argument settings.

Author(s)

Jan Philipp Dietrich

See Also

cachePut, cacheName, getNonDefaultArguments

6 cacheCleanup

Examples

madrat:::cacheArgumentsHash("madrat:::readTau", args = list(subtype = "historical"))
madrat:::cacheArgumentsHash("madrat:::readTau", args = list(subtype = "paper"))
calls <- c(madrat:::readTau, madrat:::convertTau)
madrat:::cacheArgumentsHash(calls, args = list(subtype = "historical"))

cacheCleanup cacheCleanup

Description

Delete files older than the specified number of days, based on file time metadata (per default atime
= last access time).

Usage

cacheCleanup(
daysThreshold,
path = getConfig("cachefolder", verbose = FALSE),
timeType = c("atime", "mtime", "ctime"),
ask = TRUE,
readlineFunction = readline

)

Arguments

daysThreshold Files older than this many days are deleted/returned.

path Path to where to look for old files.

timeType Which file metadata time should be used. One of atime (last access time, de-
fault), mtime (last modify time), ctime (last metadata change).

ask Whether to ask before deleting.
readlineFunction

Only needed for testing. A function to prompt the user for input.

Details

File time metadata is not available on all systems and the semantics are also system dependent, so
please be careful and check that the correct files are deleted. This function will return a data.frame
containing all files that would be deleted if the user answers ’n’ to the question. If deleting files
fails a warning is created.

Value

If the user answers ’n’, a data.frame as returned by base::file.info, containing only files older than
<daysThreshold> days.

cacheCopy 7

cacheCopy cacheCopy

Description

Copy cache files which were used for a given preprocessing.

Usage

cacheCopy(file, target = NULL, filter = NULL)

Arguments

file Path to a log file or content of a log as character vector.

target Folder to which the files should be copied. If NULL no data is copied.

filter Regular expression to filter the cache files shown in the log file.

Value

A vector of cache files which match the given log information and filter.

Author(s)

Jan Philipp Dietrich

cacheGet Tool: cacheGet

Description

Load fitting cache data (if available)

Usage

cacheGet(prefix, type, args = NULL, graph = NULL, ...)

Arguments

prefix function prefix (e.g. "calc" or "read")

type output type (e.g. "TauTotal")

args a list of named arguments used to call the given function

graph A madrat graph as returned by getMadratGraph. Will be created with getMadratGraph
if not provided.

... Additional arguments for getMadratGraph in case that no graph is provided
(otherwise ignored)

8 cacheName

Value

cached data, if cache is available, otherwise NULL

Author(s)

Jan Philipp Dietrich

See Also

cachePut, cacheName

Examples

madrat:::cacheGet("calc", "TauTotal", packages = "madrat")

cacheName Tool: cacheName

Description

Load fitting cache data (if available)

Usage

cacheName(
prefix,
type,
args = NULL,
graph = NULL,
mode = "put",
packages = getConfig("packages"),
globalenv = getConfig("globalenv")

)

Arguments

prefix function prefix (e.g. "calc" or "read")

type output type (e.g. "TauTotal")

args a list of named arguments used to call the given function

graph A madrat graph as returned by getMadratGraph. Will be created with getMadratGraph
if not provided.

mode Context in which the function is used. Either "get" (loading) or "put" (writing).
In case of "put" the potential file name is returned. When set to "get", a file name
will only be returned if the file exists (otherwise NULL) and in combination
which setConfig(forcecache=TRUE) even a cache file with deviating hash
might get selected.

cachePut 9

packages A character vector with packages for which the available Sources/Calculations
should be returned

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

Value

Name of fitting cache file, if available, otherwise NULL

Note

setConfig(forcecache=TRUE) strongly affects the behavior of cacheName. In read model it will
also return cache names with deviating hashes if no fitting cache file is found (in that case it will
just return the newest one). In write mode the hash in the name will be left out since due to cache
forcing it cannot be guaranteed that the cache file agrees with the state represented by the hash.

Author(s)

Jan Philipp Dietrich

See Also

cachePut, cacheName

Examples

madrat:::cacheName("calc", "TauTotal")

cachePut Tool: cachePut

Description

Save data to cache

Usage

cachePut(x, prefix, type, args = NULL, graph = NULL, ...)

Arguments

x data that should be written to cache
prefix function prefix (e.g. "calc" or "read")
type output type (e.g. "TauTotal")
args a list of named arguments used to call the given function
graph A madrat graph as returned by getMadratGraph Will be created with getMadratGraph

if not provided.
... Additional arguments for getMadratGraph in case that no graph is provided

(otherwise ignored)

10 calcOutput

Author(s)

Jan Philipp Dietrich

See Also

cachePut, cacheName

Examples

Not run:
example <- 1
madrat:::cachePut(example, "calc", "Example", packages = "madrat")

End(Not run)

calcOutput calcOutput

Description

Calculate a specific output for which a calculation function exists. The function is a wrapper for
specific functions designed for the different possible output types.

Usage

calcOutput(
type,
aggregate = TRUE,
file = NULL,
years = NULL,
round = NULL,
signif = NULL,
supplementary = FALSE,
append = FALSE,
warnNA = TRUE,
na_warning = NULL,
try = FALSE,
regionmapping = NULL,
writeArgs = NULL,
...

)

Arguments

type output type, e.g. "TauTotal". A list of all available source types can be retrieved
with function getCalculations.

calcOutput 11

aggregate Boolean indicating whether output data aggregation should be performed or not,
"GLO" (or "glo") for aggregation to one global region, "REG+GLO" (or "reg-
glo") for a combination of regional and global data.

file A file name. If given the output is written to that file in the outputfolder as
specified in the config.

years A vector of years that should be returned. If set to NULL all available years are
returned.

round Number of decimal places to round to. Ignored if NULL. See round() for details.

signif Number of significant digits to round to. Ignored if NULL. See signif() for
details.

supplementary boolean deciding whether supplementary information such as weight should be
returned or not. If set to TRUE a list of elements will be returned!

append boolean deciding whether the output data should be appended in the existing
file. Works only when a file name is given in the function call.

warnNA boolean deciding whether NAs in the data set should create a warning or not

na_warning deprecated, please use warnNA instead

try if set to TRUE the calculation will only be tried and the script will continue even
if the underlying calculation failed. If set to FALSE calculation will stop with
an error in such a case. This setting will be overwritten by the global setting
debug=TRUE, in which try will be always interpreted as TRUE.

regionmapping alternative regionmapping to use for the given calculation. It will temporarily
overwrite the global setting just for this calculation.

writeArgs a list of additional, named arguments to be supplied to the corresponding write
function

... Additional settings directly forwarded to the corresponding calculation function

Value

magpie object with the requested output data either on country or on regional level depending on
the choice of argument "aggregate" or a list of information if supplementary is set to TRUE.

Note

The underlying calc-functions are required to provide a list of information back to calcOutput.
Following list entries should be provided:

• x - the data itself as magclass object

• weight - a weight for the spatial aggregation

• unit - unit of the provided data

• description - a short description of the data

• note (optional) - additional notes related to the data

• class (optional | default = "magpie") - Class of the returned object. If set to something other
than "magpie" most functionality, such as aggregation or unit tests will not be available and is
switched off!

12 calcOutput

• isocountries (optional | default = TRUE (mostly) or FALSE (if global)) - a boolean indicat-
ing whether data is in iso countries or not (the latter will deactivate several features such as
aggregation)

• mixed_aggregation (optional | default = FALSE) - boolean which allows for mixed aggrega-
tion (weighted mean mixed with summations). If set to TRUE weight columns filled with NA
will lead to summation, otherwise they will trigger an error.

• min (optional) - Minimum value which can appear in the data. If provided calcOutput will
check whether there are any values below the given threshold and warn in this case

• max (optional) - Maximum value which can appear in the data. If provided calcOutput will
check whether there are any values above the given threshold and warn in this case

• structure.spatial (optional) - regular expression describing the name structure of all names
in the spatial dimension (e.g. "^[A-Z]\{3\}$"). Names will be checked against this regular
expression and disagreements will be reported via a warning.

• structure.temporal (optional) - regular expression describing the name structure of all names
in the temporal dimension (e.g. "^y[0-9]\{4\}$"). Names will be checked against this
regular expression and disagreements will be reported via a warning.

• structure.data (optional) - regular expression describing the name structure of all names in
the data dimension (e.g. "^[a-z]*\\\\.[a-z]*$"). Names will be checked against this
regular expression and disagreements will be reported via a warning.

• aggregationFunction (optional | default = toolAggregate) - Function to be used to aggregate
data from country to regions. The function must have the argument x for the data itself and
rel for the relation mapping between countries and regions and must return the data as magpie
object in the spatial resolution as defined in rel.

• aggregationArguments (optional) - List of additional, named arguments to be supplied to
the aggregation function. In addition to the arguments set here, the function will be sup-
plied with the arguments x, rel and if provided/deviating from the default also weight and
mixed_aggregation.

• putInPUC (optional) boolean which decides whether this calculation should be added to a
puc file which contains non-aggregated data and can be used to later on aggregate the data to
resolutions of own choice. If not set calcOutput will try to determine automatically, whether
a file is being required for the puc file or not, but in more complex cases (e.g. if calculations
below top-level have to be run as well) this setting can be used to manually tweak the puc file
list. CAUTION: Incorrect settings will cause corrupt puc files, so use this setting with extreme
care and only if necessary.

• cache (optional) boolean which decides whether a cache file should be written (if caching is
active) or not. Default setting is TRUE. This can be for instance useful, if the calculation
itself is quick, but the corresponding file sizes are huge. Or if the caching for the given data
type does not support storage in RDS format. CAUTION: Deactivating caching for a data set
which should be part of a PUC file will corrupt the PUC file. Use with care.

Author(s)

Jan Philipp Dietrich

See Also

setConfig, calcTauTotal,

calcTauTotal 13

Examples

Not run:

a <- calcOutput(type = "TauTotal")

End(Not run)

calcTauTotal Calculate total tau

Description

This function prepares total tau values for use. As the source data already provides all required
information this function purely removes not required data and moves xref values to the weighting
object which is required for aggregation.

Usage

calcTauTotal(source = "paper")

Arguments

source data source, either "paper" (default) or "historical".

Value

Total tau data and corresponding weights as a list of two MAgPIE objects

Author(s)

Jan Philipp Dietrich

See Also

calcOutput, readTau, convertTau

Examples

Not run:
calcOutput("TauTotal")

End(Not run)

14 compareMadratOutputs

compareData compareData

Description

Compares the content of two data archives and looks for similarities and differences

Usage

compareData(x, y, tolerance = 10^-5, yearLim = NULL)

Arguments

x Either a tgz file or a folder containing data sets

y Either a tgz file or a folder containing data sets

tolerance tolerance level below which differences will get ignored

yearLim year until when the comparison should be performed. Useful to check if data is
identical until a certain year.

Author(s)

Jan Philipp Dietrich, Florian Humpenoeder

See Also

setConfig, calcTauTotal,

compareMadratOutputs Compare a madrat function’s output with and without your changes

Description

With ‘compareMadratOutputs‘ you can easily compare the output of a madrat function (read, calc,
...) with and without your changes. First, run ‘compareMadratOutputs‘ without your changes, so a
‘.rds‘ file with the original output is saved. Then apply your changes and run ‘compareMadratOut-
puts‘ again to compare the new output to the original output.

Usage

compareMadratOutputs(package, functionName, subtypes, overwriteOld = FALSE)

convertTau 15

Arguments

package [character(1)] The package where the given function is located. It will be at-
tached via ‘library‘.

functionName [character(1)] The name of the function from which you want to compare out-
puts. Must be a madrat function whose name starts with read, correct, convert,
or calc.

subtypes [character(n)] The subtypes you want to check. For calc functions this must be
NULL.

overwriteOld If TRUE: overwrite a "*-old-*.rds" previously created with compareMadratOut-
puts.

Details

If there are differences a ‘<functionName>-new.rds‘ containing the new output is saved for closer
inspection. All files are created in the current working directory.

Value

Invisibly the result of ‘waldo::compare‘ or ‘all.equal‘ if a comparison was made, otherwise a named
list of the outputs for each subtype.

Author(s)

Pascal Sauer

Examples

Not run:
save original output to readTau-old.rds
compareMadratOutputs("madrat", "readTau", c("paper", "historical"))

now apply your changes to madrat:::readTau, reinstall madrat, restart the R session

compare new output to original output from readTau-old.rds
compareMadratOutputs("madrat", "readTau", c("paper", "historical"))

End(Not run)

convertTau Convert Tau

Description

Convert landuse intensity data (tau) to data on ISO country level.

16 downloadSource

Usage

convertTau(x)

Arguments

x MAgPIE object containing tau values and corresponding weights xref at 0.5deg
cellular level.

Value

Tau data and weights as MAgPIE object aggregated to country level

Author(s)

Jan Philipp Dietrich

downloadSource downloadSource

Description

Download a source. The function is a wrapper for specific functions designed for the different
possible source types.

Usage

downloadSource(type, subtype = NULL, overwrite = FALSE, numberOfTries = 300)

Arguments

type source type, e.g. "IEA". A list of all available source types can be retrieved with
function getSources("download").

subtype For some sources there are subtypes of the source, for these source the subtype
can be specified with this argument. If a source does not have subtypes, subtypes
should not be set.

overwrite Boolean deciding whether existing data should be overwritten or not.

numberOfTries Integer determining how often readSource will check whether a running down-
load is finished before exiting with an error. Between checks readSource will
wait 30 seconds. Has no effect if the sources that should be read are not currently
being downloaded.

downloadSource 17

Note

The underlying download-functions are required to provide a list of information back to downloadSource.
Following list entries should be provided:

• url - full path to the file that should be downloaded

• title - title of the data source

• author - author(s) of the data set

• license - license of the data set. Put unknown if not specified.

• description - description of the data source

• unit - unit(s) of the data

• doi (optional) - a DOI URL to the data source

• version (optional) - version number of the data set

• release_date (optional) - release date of the data set

• reference (optional) - A reference for the data set (e.g. a paper, if the data was derived from
it)

This user-provided data is enriched by automatically derived metadata:

• call - Information about the used madrat function call to download the data will check whether
there are any values below the given threshold and warn in this case

• accessibility - A measure of quality for the accessibility of the data. Currently it distinguished
between iron (manual access), silver (automatic access via URL) and gold (automatic access
via DOI).

Besides the names above (user-provided and automatically derived) it is possible to add custom
metadata entries by extending the return list with additional, named entries.

Author(s)

Jan Philipp Dietrich, David Klein, Pascal Sauer

See Also

setConfig, readSource

Examples

Not run:
a <- downloadSource("Tau", subtype = "historical")

End(Not run)

18 fingerprint

findBottlenecks findBottlenecks

Description

Analyzes a log from a retrieveData run, extracts runtime information for all called functions and
identifies most critical bottlenecks.

Usage

findBottlenecks(file, unit = "min", cumulative = TRUE)

Arguments

file path to a log file or content of a log as character vector

unit unit for runtime information, either "s" (seconds), "min" (minutes) or "h" (hours)

cumulative boolean deciding whether calls to the same function should be aggregated or not

Value

A data.frame sorted by net runtime showing for the different data processing functions their total
runtime "time" (including the execution of all sub-functions) and net runtime "net" (excluding the
runtime of sub-functions) and their share of total runtime.

Author(s)

Jan Philipp Dietrich

fingerprint Tool: fingerprint

Description

Function which creates a unique fingerprint for a madrat function based on the code of the function
itself, other madrat functions which are called by this function and of all source folders involved in
the process. The fingerprint can serve as an indication whether the workflow for the given function
has been most likely changed, or not. If all involved source folders and the code of all involved
functions remains the same, also the fingerprint will stay the same, otherwise it will change. Hence,
it can be to figure out whether a cache file can be used for further calculations, or whether the
calculation should be redone.

Usage

fingerprint(name, details = FALSE, graph = NULL, ...)

fullEXAMPLE 19

Arguments

name Name of the function to be analyzed

details Boolean indicating whether additional details in form of an attribute with under-
lying hash information should be added or not

graph A madrat graph as returned by getMadratGraph. Will be created with getMadratGraph
if not provided.

... Additional arguments for getMadratGraph in case that no graph is provided
(otherwise ignored)

Value

A fingerprint (hash) of all provided sources, or "fingerprintError"

Note

For a better performance only the first 300 bytes of each file and the corresponding file size is
hashed. As the fingerprint function only takes madrat-based functions into account (e.g. read-
functions or calc-functions), but does ignore all other functions there might be cases where calcula-
tions actually changed, but the fingerprint is still the same. In a similar fashion it is possible that the
fingerprint changes even though the workflow stayed the same (as the dependencies are sometimes
overestimated).

Author(s)

Jan Philipp Dietrich, Pascal Sauer

See Also

readSource

Examples

madrat:::fingerprint("toolGetMapping", package = "madrat")

fullEXAMPLE fullExample

Description

Example for class of fullX functions. Can be used as template for a new function or for testing the
basic functionality

Usage

fullEXAMPLE(rev = 0, dev = "", extra = "Example argument")

20 getCalculations

Arguments

rev data revision which should be used/produced. Will be converted to numeric_version
when called via retrieveData.

dev development suffix to distinguish development versions for the same data revi-
sion. This can be useful to distinguish parallel lines of development.

extra additional argument which - when changed - does not require a re-computation
of the portable unaggegrated collection (puc) file. setConfig (e.g. for setting
the mainfolder if not already set properly).

Author(s)

Jan Philipp Dietrich

See Also

readSource,getCalculations,calcOutput,setConfig

Examples

Not run:
retrieveData("example", rev = "2.1.2", dev = "test", regionmapping = "regionmappingH12.csv")

End(Not run)

getCalculations getCalculations

Description

This function can be used to retrieve a list of currently available sources and outputs (based on the
availability of corresponding conversion functions in the loaded data data processing packages.)

Usage

getCalculations(
prefix = "calc",
packages = getConfig("packages"),
globalenv = getConfig("globalenv")

)

getCode 21

Arguments

prefix Type of calculations, vector of types or search term (e.g. "read|calc"). Avail-
able options are "download" (source download), "read" (source read), "correct"
(source corrections), "convert" (source conversion to ISO countries), "calc" (fur-
ther calculations), and "full" (collections of calculations)

packages A character vector with packages for which the available Sources/Calculations
should be returned

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

Value

A data frame containing all currently available outputs of all loaded data processing packages in-
cluding its name, its function call and its package origin.

Author(s)

Jan Philipp Dietrich

See Also

readSource, setConfig

Examples

print(getCalculations())
print(getCalculations("read"))

getCode getCode

Description

Extract function code from madrat-style functions in specified packages

Usage

getCode(
packages = installedMadratUniverse(),
globalenv = getConfig("globalenv")

)

22 getConfig

Arguments

packages A character vector with packages for which the available Sources/Calculations
should be returned

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

Value

A named vector with condensed function code

Author(s)

Jan Philipp Dietrich

See Also

getMadratGraph

getConfig getConfig

Description

This function returns the madrat config which is currently loaded. If no configuration has been
loaded so far the configuration will be initialized with default settings or system settings (if avail-
able).

Usage

getConfig(option = NULL, raw = FALSE, verbose = TRUE, print = FALSE)

Arguments

option The option for which the setting should be returned. If set to NULL all options
are returned.

raw If set to FALSE some settings will be calculated, e.g. if the cache folder is set to
FALSE the full path will be calculated using the main folder, or if the verbosity
is not set the default verbosity will be returned. If raw is set to TRUE settings
are returned as they are currently stored.

verbose boolean deciding whether status information/updates should be shown or not

print if TRUE and verbose is TRUE a configuration overview will also get printed

Value

A config list with all settings currently set for the madrat package

getDependencies 23

Note

getConfig is primarily designed to make the overall madrat configuration available to system tools
of the madrat framework. There are only a few exceptions for which configuration settings are also
readable from within a download-, read-, convert-, correct-, calc- or full-function. These excep-
tions are the setting "debug" (which can be used to add additional debug messages when active),
the "tmpfolder" which can be used to temporarily store data and the setting "hash" (which can only
be accessed from within a full function and can there be used to apply the identical hash algo-
rithm for other calculations in which hashing is being used). Besides that "regionmapping" and
"extramappings" can also be read from within calc- and full-functions but their use is at least for the
calc-functions discouraged as it either might lead to incorrect caching behavior, or - if implemented
correctly - lead to significant slow-downs of overall calculations. All other settings are currently
still accessible but trigger a warning that this option will soon be removed. So, please make sure
that your code runs without reading these options! As a background note: Read access to these
settings will be restricted as they otherwise would allow access to code elements or data in a form
which is violating the overall madrat logic and thereby can lead to erroneous results.

Author(s)

Jan Philipp Dietrich

See Also

setConfig, initializeConfig

getDependencies getDependencies

Description

Returns information about dependencies of a madrat-based calc- read- or full-function.

Usage

getDependencies(
name,
direction = "in",
graph = NULL,
type = NULL,
self = FALSE,
...

)

Arguments

name name of the function to be analyzed

24 getFlags

direction Character string, either “in”, “out”, "both", “full”, "din" or "dout". If “in” all
sources feeding into the function are listed. If “out” consumer of the function
are listed. If “both” the union of "in" and "out" is returned. If "full" the full
network this function is connected to is shown, including indirect connections
to functions which neither source nor consume the given function but serve as
sources to other consumer functions. "din" and "dout" (short for "direct in" and
"direct out") behave like "in" and "out" but only show direct calls in or from the
function (ignoring the network of functions attached to it).

graph A madrat graph as returned by getMadratGraph. Will be created with getMadratGraph
if not provided.

type type filter. Only dependencies of that type will be returned. Currently available
types are "calc", "read" and "tool"

self boolean defining whether the function itself, which is analyzed, should be in-
cluded in the output, or not

... Additional arguments for getMadratGraph in case that no graph is provided
(otherwise ignored)

Author(s)

Jan Philipp Dietrich

See Also

getCalculations, getMadratGraph, getMadratInfo

getFlags getFlags

Description

Support function which extracts flags from code. Flags are string literals in a function body, for
example ‘"!# @pucArguments extra"‘.

Usage

getFlags(code)

Arguments

code A character vector with code from functions to be analyzed

Value

A list of found flag entries

Author(s)

Jan Philipp Dietrich

getISOlist 25

See Also

getCode

getISOlist get official ISO list

Description

Function which returns the ISO list which is used as default for the input data preparation. It
contains the countries to which all source data has to be up- or downscaled to.

Usage

getISOlist(type = "all", threshold = 1)

Arguments

type Determines what countries should be returned. "all" returns all countries, "im-
portant" returns all countries which are above the population threshold set in
the configuration and "dispensable" returns all countries which are below the
threshold.

threshold Population threshold in million capita which determines whether the country is
put into the "important" or "dispensable" class (default = 1 mio. people)

Value

vector of default ISO country codes.

Note

Please always use this function instead of directly referring to the data object as the format in this
data list might change in the future!

Author(s)

Jan Philipp Dietrich

See Also

getSources, getCalculations

Examples

head(getISOlist())
head(getISOlist("dispensable"))

26 getLocation

getLinkFunction getLinkFunction

Description

Returns a function that creates a symlink, hardlink, junction, or copy of files and directories, de-
pending on OS capabilities (usually symlinks are not supported on Windows).

Usage

getLinkFunction()

Value

A function with arguments "from" and "to" which should behave like file.symlink on all platforms.

Author(s)

Pascal Sauer

getLocation getLocation

Description

Returns names of packages in which functions matching the description are found

Usage

getLocation(name, packages = installedMadratUniverse(), globalenv = TRUE)

Arguments

name name of the function to be found. Can be either the full name (e.g. "calcTauTo-
tal"), or just the type name (e.g. "TauTotal").

packages A character vector with packages in which should be looked for the function

globalenv Boolean deciding whether functions in the global environment should be in-
cluded or not

Value

vector of packages in which a function matching the description could be found

Author(s)

Jan Philipp Dietrich

getMadratGraph 27

See Also

getCalculations, getDependencies

getMadratGraph getMadratGraph

Description

Function returns the madrat graph of all linkages of full, calc, and read functions of the given
madrat based packages. Linkages to subfunctions of read functions (i.e. download, correct or
convert functions) are not listed separately, but collectively referred to through the corresponding
read function.

Usage

getMadratGraph(
packages = installedMadratUniverse(),
globalenv = getConfig("globalenv")

)

Arguments

packages A character vector with packages for which the available Sources/Calculations
should be returned

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

Value

A data frame with 4 columns: from (source function), from_package (package the source function
originates from), to (function which is using the source), to_package (package of the using function)

Author(s)

Jan Philipp Dietrich

See Also

getCalculations, getConfig

28 getMadratMessage

getMadratInfo getMadratInfo

Description

Collects and returns detailed information about the currently loaded network of madrat functions.

Usage

getMadratInfo(graph = NULL, cutoff = 5, extended = FALSE, ...)

Arguments

graph A madrat graph as returned by getMadratGraph. Will be created with getMadratGraph
if not provided.

cutoff Integer introducing a cutoff of items to be returned for outputs which can be-
come quite verbose.

extended Will add additional outputs which has been removed from standard output due
to limited usefulness.

... Additional arguments for getMadratGraph in case that no graph is provided
(otherwise ignored)

Author(s)

Jan Philipp Dietrich

See Also

getCalculations, getMadratGraph

getMadratMessage getMadratMessage

Description

Read a madrat message from the madrat environment. The madrat environment behaves similar like
global options, except that 1) messages will also be stored in cache files and restored when a cache
file is being loaded and 2) messages are always stored in lists with messages split by function calls
where the message was triggered.

Usage

getMadratMessage(name = NULL, fname = NULL)

getMainfolder 29

Arguments

name The category in which the message should be stored

fname function name. If specified only messages belonging to the functions history
will be returned (this includes entries from the function itself, but also entries
from functions which were called by this function).

Author(s)

Jan Philipp Dietrich

See Also

getMadratMessage

Examples

putMadratMessage("test", "This is a toast", fname = "readTau")
getMadratMessage("test", fname = "calcTauTotal")

getMainfolder getMainfolder

Description

Functions checks for a global setting of the mainfolder (either by setting the environment variable
"MADRAT_MAINFOLDER" or by setting the R option with the same name). If none of these is
available the user will be asked for a directory. If this is not provided a temporary folder will be
used.

Usage

getMainfolder(verbose = TRUE, .testmode = FALSE)

Arguments

verbose boolean deciding whether status information/updates should be shown or not

.testmode boolean switch only relevant for internal testing (will simulate user inputs)

Author(s)

Jan Philipp Dietrich

See Also

initializeConfig, getConfig, setConfig

30 getNonDefaultArguments

getNonDefaultArguments

getNonDefaultArguments

Description

Given a function and an argument list, identify which arguments are different from their default.

Usage

getNonDefaultArguments(call, args = NULL)

Arguments

call A function name as a string or symbol. Passing a vector of functions is possible,
but is only intended for corresponding read/correct/convert functions. If mul-
tiple functions in a vector define arguments with the same name but different
default values only the default defined in the first function is considered.

args A list of named arguments used to call the given function(s). If duplicates of
arguments exists the first occurrence of the argument will be used.

Value

A subset of args that is used by the function/s and is different from default values.

Author(s)

Jan Philipp Dietrich

See Also

cacheArgumentsHash, toolstartmessage

Examples

madrat:::getNonDefaultArguments("madrat:::readTau", args = list(subtype = "historical"))
madrat:::getNonDefaultArguments("madrat:::readTau", args = list(subtype = "paper"))
calls <- c(madrat:::readTau, madrat:::convertTau)
madrat:::getNonDefaultArguments(calls, args = list(subtype = "historical"))

getSourceFolder 31

getSourceFolder getSourceFolder

Description

Return the path to source data files for the given type and subtype. This applies redirections, see
redirectSource for more details.

Usage

getSourceFolder(type, subtype)

Arguments

type Dataset name, e.g. "Tau" for readTau

subtype Subtype of the dataset, e.g. "paper" for readTau, NULL is allowed

Value

Path to source data files

Author(s)

Pascal Sauer

getSources getSources

Description

These functions can be used to retrieve a list of currently available sources and outputs (based on
the availability of corresponding conversion functions in the loaded data data processing packages.)

Usage

getSources(
name = NULL,
type = NULL,
packages = getConfig("packages"),
globalenv = getConfig("globalenv")

)

32 initializeConfig

Arguments

name name of function for which sources should get returned. If not specified, all
sources in the specified environment are returned

type Type of source, either set to "read", "convert", "correct", "download" or NULL.
If specified, a vector containing the sources with the corresponding function type
are returned, otherwise a data.frame with all sources and their available function
types is returned.

packages A character vector with packages for which the available Sources/Calculations
should be returned

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

Value

A vector or data.frame containing all corresponding sources

Note

Please be aware that these functions only check the availability of corresponding functions of the
package, not whether the functions will properly work.

Author(s)

Jan Philipp Dietrich

See Also

readSource, setConfig

Examples

print(getSources())

initializeConfig initializeConfig

Description

Checks whether configuration already has been set. If not, it will be initialized with default settings
or (if available) system settings. All madrat folders (see setConfig for documentation which fold-
ers are available) will be set to the system environment variables MADRAT_SOURCEFOLDER,
MADRAT_CACHEFOLDER, etc. if they exist, NA otherwise. NA means subfolders of the main-
folder are used.

installedMadratUniverse 33

Usage

initializeConfig(verbose = TRUE)

Arguments

verbose boolean deciding whether status information/updates should be shown or not

Author(s)

Jan Philipp Dietrich

See Also

getMainfolder, getConfig, setConfig

installedMadratUniverse

installedMadratUniverse

Description

Returns a name vector of installed packages which supposedly belong to the madrat universe. They
are currently derived as the union of all loaded madrat packages and all packages with a name start-
ing with "mr" or "ms" (as the usual indicator for madrat-packages and madrat-support-packages).

Usage

installedMadratUniverse()

Value

A name vector of installed packages which supposedly belong to the madrat universe

Author(s)

Jan Philipp Dietrich

See Also

setConfig

Examples

Not run:
installedMadratUniverse()

End(Not run)

34 madapply

isWrapperActive isWrapperActive

Description

Support functions which checks whether a given wrapper function is currently in-use or not or
which locally activate or deactivate a wrapper (setting will be automatically resetted when a function
finishes).

Usage

isWrapperActive(name)

setWrapperActive(name)

setWrapperInactive(name)

Arguments

name name of the wrapper in question (e.g. "calcOutput")

Functions

• setWrapperActive(): set wrapper activity status to on
• setWrapperInactive(): set wrapper activity status to off

Author(s)

Jan Philipp Dietrich

madapply madapply

Description

This function is defunct and will be completely removed soon.

Usage

madapply(...)

Arguments

... placeholder

Author(s)

Jan Philipp Dietrich

madlapply 35

madlapply madlapply

Description

This function is defunct and will be completely removed soon.

Usage

madlapply(...)

Arguments

... placeholder

Author(s)

Jan Philipp Dietrich

madratAttach madratAttach / madratDetach

Description

Attaches the madrat functions of a package to the currently active madrat universe or detaches it
again from it.

Usage

madratAttach(package)

madratDetach(package)

Arguments

package name of the package to be loaded. Alternative, the path to the package.

Functions

• madratDetach(): detach package from madrat universe

Author(s)

Jan Philipp Dietrich

36 madTempDir

See Also

getConfig, setConfig

Examples

Not run:
madratAttach("madrat")

End(Not run)

madTempDir madTempDir

Description

returns a temporary directory as a subfolder of the tempfolder set in getConfig("tmpfolder").

Usage

madTempDir()

Value

path to the temp folder

Author(s)

Jan Philipp Dietrich

See Also

getConfig

Examples

Not run:
madrat:::madTempDir()

End(Not run)

metadataGFZ 37

metadataGFZ metadataGFZ

Description

Function to extract metadata information of a data set hosted at GFZ dataservices (https://dataservices.gfz-
potsdam.de/portal/).

Usage

metadataGFZ(doi)

Arguments

doi DOI of a data set hosted at GFZ dataservices

Value

a list with entries "license", "citation", "authors" and "year"

Author(s)

Jan Philipp Dietrich

See Also

toolstartmessage, vcat

Examples

Not run:
metadataGFZ("10.5880/pik.2019.004")

End(Not run)

prepFunctionName prepFunctionName

Description

Function to prepare a function call for a given type and prefix

Usage

prepFunctionName(type, prefix = "calc", ignore = NULL, error_on_missing = TRUE)

38 pucAggregate

Arguments

type name of calculation/source

prefix Type of calculations. Available options are "download" (source download),
"read" (source read), "correct" (source corrections), "convert" (source conver-
sion to ISO countries), "calc" (further calculations), and "full" (collections of
calculations)

ignore vector of arguments which should be ignored (not be part of the function call)
error_on_missing

boolean deciding whether a missing type should throw an error or return NULL

Value

A function call as character to the specified function with corresponding package as attribute

Author(s)

Jan Philipp Dietrich

See Also

readSource, setConfig

Examples

print(madrat:::prepFunctionName("Tau","read"))
print(madrat:::prepFunctionName("TauTotal","calc"))
print(madrat:::prepFunctionName("EXAMPLE","full"))

pucAggregate pucAggregate

Description

Function which takes a puc-file ("portable unaggregated collection") as created via retrieveData
and computes the corresponding aggregated collection with the provided arguments (e.g. the pro-
vided region mapping). The resulting tgz-file containing the collection will be put to the madrat
outputfolder as defined in getConfig("outputfolder").

Usage

pucAggregate(
puc,
regionmapping = getConfig("regionmapping"),
...,
renv = TRUE,
strict = FALSE

)

putMadratMessage 39

Arguments

puc path to a puc-file

regionmapping region mapping to be used for aggregation.

... (Optional) Settings that should be changed in addition. NOTE: which settings
can be modified varies from puc to puc. Allowed settings are typically listed in
the file name of the puc file after the revision number.

renv Boolean which determines whether data should be aggregated from within a
renv environment (recommended) or not. If activated, renv will check which
packages in which versions were used to create the puc file, download, install
and load these packages and run the aggregation with them. Otherwise, the
packages in the currently used environment are being used.

strict Boolean or NULL which allows to trigger a strict mode. During strict mode
warnings will be taken more seriously and will cause 1. to have the number of
warnings as prefix of the created tgz file and 2. will prevent retrieveData from
creating a puc file. If set to NULL the setting will be read from the puc file.

Author(s)

Jan Philipp Dietrich

See Also

retrieveData,localConfig

Examples

Not run:
pucAggregate("rev1_example.puc", regionmapping = "regionmappingH12.csv")

End(Not run)

putMadratMessage putMadratMessage

Description

Store a madrat message in the madrat environment. The madrat environment behaves similar like
global options, except that 1) messages will also be stored in cache files and restored when a cache
file is being loaded and 2) messages are always stored in lists with messages split by function calls
where the message was triggered.

Usage

putMadratMessage(name, value, fname = -1, add = FALSE)

40 readSource

Arguments

name The category in which the message should be stored

value The message that should be recorded as character. Alternatively, if name is not
set, it is also possible to provide a complete list of the structure value[[name]][[fname]]
where name and fname correspond to the category name and function name en-
tries (e.g. value = list(test = list(readTau = "This is a toast"))).

fname function name the entry belongs to or the frame number from which the function
name should be derived from (e.g. -1 to recieve function name from parent
function).

add boolean deciding whether the value should be added to a existing value (TRUE)
or overwrite it (FALSE)

Author(s)

Jan Philipp Dietrich

See Also

putMadratMessage

Examples

putMadratMessage("test", "This is a toast", fname = "readTau")
getMadratMessage("test", fname = "calcTauTotal")

readSource readSource

Description

Read in a source file and convert it to a MAgPIE object. The function is a wrapper for specific
functions designed for the different possible source types.

Usage

readSource(
type,
subtype = NULL,
subset = NULL,
convert = TRUE,
supplementary = FALSE

)

readSource 41

Arguments

type A character string referring to the source type, e.g. "IEA" which would in-
ternally call a function called ‘readIEA‘ (the "wrapped function"). A list of
available source types can be retrieved with function getSources.

subtype A character string. For some sources there are subtypes of the source, for these
sources the subtype can be specified with this argument. If a source does not
have subtypes, subtypes should not be set.

subset A character string. Similar to subtype a source can also have subsets. A
subsets can be used to only read part of the data. This can in particular make
sense for huge data sets where reading in the whole data set might be impractical
or even infeasible.

convert Boolean indicating whether input data conversion to ISO countries should be
done or not. In addition it can be set to "onlycorrect" for sources with a separate
correctXXX-function.

supplementary Boolean deciding whether a list including the actual data and metadata, or just
the actual data is returned.

Value

The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and
metadata is returned instead. The temporal and data dimensionality should match the source data.
The spatial dimension should either match the source data or, if the convert argument is set to
TRUE, should be on ISO code country level.

Note

If a magpie object is returned magclass::clean_magpie is run and if convert = TRUE ISO code
country level is checked.

Author(s)

Jan Philipp Dietrich, Anastasis Giannousakis, Lavinia Baumstark, Pascal Sauer

See Also

setConfig, downloadSource, readTau #’ @note The underlying read-functions can return a mag-
pie object or a list of information (preferred) back to readSource. In list format the object should
have the following structure:

• x - the data itself as magclass object

• unit (optional) - unit of the provided data

• description (otional) - a short description of the data

• note (optional) - additional notes related to the data

• class (optional | default = "magpie") - Class of the returned object. If set to something other
than "magpie" most functionality will not be available and is switched off!

42 readTau

• cache (optional) boolean which decides whether a cache file should be written (if caching is
active) or not. Default setting is TRUE. This can be for instance useful, if the calculation
itself is quick, but the corresponding file sizes are huge. Or if the caching for the given data
type does not support storage in RDS format. CAUTION: Deactivating caching for a data set
which should be part of a PUC file will corrupt the PUC file. Use with care.

Examples

Not run:
a <- readSource("Tau", "paper")

End(Not run)

readTau Read Tau

Description

Read-in landuse intensity data (tau) following the methodology published in Dietrich J.P., Schmitz
C., Mueller C., Fader M., Lotze-Campen H., Popp A., Measuring agricultural land-use intensity - A
global analysis using a model-assisted approach, Ecological Modelling, Volume 232, 10 May 2012,
Pages 109-118, ISSN 0304-3800, 10.1016/j.ecolmodel.2012.03.002.

Usage

readTau(subtype = "paper")

Arguments

subtype Type of Tau data that should be read. Available types are:

• paper: numbers as they are reported in the paper (cellular, crop-specific)
• historical: historic tau values on iso country level for total tau factor.

This numbers were calculated by taking FAO yields and norming it to the
1995 tau values of the paper (faoyields*tau95/mean(faoyields[1995:2005]))

Value

Tau data and weights as MAgPIE object in original resolution

Author(s)

Jan Philipp Dietrich

See Also

readSource

redirect 43

Examples

Not run:
a <- readSource("Tau")

End(Not run)

redirect redirect

Description

Redirect a given dataset type to a different source folder. The redirection is local, so it will be reset
when the current function call returns. See example for more details.

Usage

redirect(type, target, linkOthers = TRUE, local = TRUE)

Arguments

type Dataset name, e.g. "Tau" for readTau

target Either path to the new source folder that should be used instead of the default,
or NULL to remove the redirection, or a vector of paths to files which are then
symlinked into a temporary folder that is then used as target folder; if the vector
is named the names are used as relative paths in the temporary folder, e.g. target
= c(‘a/b/c.txt‘ = "~/d/e/f.txt") would create a temporary folder with subfolders
a/b and there symlink c.txt to ~/d/e/f.txt.

linkOthers If target is a list of files, whether to symlink all other files in the original source
folder to the temporary folder.

local The scope of the redirection, passed on to setConfig. Defaults to the current
function. Set to an environment for more control or to FALSE for a perma-
nent/global redirection.

Value

Invisibly, the source folder that is now used for the given type

Author(s)

Pascal Sauer

44 redirectSource

Examples

Not run:
f <- function() {

redirect("Tau", target = "~/TauExperiment")
the following call will change directory
into ~/TauExperiment instead of <getConfig("sourcefolder")>/Tau
readSource("Tau")

}
f()
Tau is only redirected in the local environment of f,
so it will use the usual source folder here
readSource("Tau")

End(Not run)

redirectSource redirectSource

Description

redirectSource will call a source specific redirect function if it exists (called e.g. redirectTau), in
which case the arguments are passed on to that function. If such a function is not available redirect
is called.

Usage

redirectSource(type, target, ..., linkOthers = TRUE, local = TRUE)

Arguments

type The source dataset type. Passed on to the specific redirect function or redirect.

target The target folder or files. Passed on to the specific redirect function or redirect.

... Additional arguments, passed on to the specific redirect function.

linkOthers Passed on to the specific redirect function or redirect.

local Passed on to the specific redirect function or redirect.

Value

The result of the specific redirect function or redirect.

Author(s)

Pascal Sauer

redirectTau 45

redirectTau redirectTau

Description

redirectTau will be called by redirectSource when type = "Tau". Redirects the Tau source folder to
the target folder.

Usage

redirectTau(target, ...)

Arguments

target The target folder or files.

... Passed on to redirect.

Author(s)

Pascal Sauer

Examples

Not run:
redirectSource("Tau", "a/different/tau-source-folder")
a <- readSource("Tau", "paper")

End(Not run)

regionscode Tool: regionscode

Description

Given a regionmapping (mapping between ISO countries and regions) the function calculates a
regionscode which is basically the md5sum of a reduced form of the mapping. The regionscode
is unique for each regionmapping and can be used to clearly identify a given regionmapping. In
addition several checks are performed to make sure that the given input is a proper regionmapping

Usage

regionscode(mapping = NULL, label = FALSE, strict = TRUE)

46 resetMadratMessages

Arguments

mapping Either a path to a mapping or an already read-in mapping as data.frame. If set to
NULL (default) the regionscode of the region mapping set in the madrat config
will be returned.

label logical deciding whether the corresponding label of a regionscode should be
returned instead of the regionscode.

strict If set to TRUE region mappings with mapping to ISO countries with exactly 2
columns or more than 2 colums (if the first colum contains irrelevant informa-
tion which will be deleted automatically) will be accepted. In this case data will
be transformed and even cases with different ordering will yield the same re-
gionscode. If set to FALSE all these checks will be ignored and the regionscode
will be just computed on the object as it is. Please be aware the regionscode will
differ with strict mode on or off!

Value

A md5-based regionscode which describes the given mapping or, if label=TRUE and a correspond-
ing label is available, the label belonging to the regionscode

Author(s)

Jan Philipp Dietrich

See Also

toolCodeLabels, fingerprint, digest

Examples

file <- system.file("extdata", "regionmappingH12.csv", package = "madrat")
regionscode(file)

resetMadratMessages resetMadratMessages

Description

Delete stored madrat messages from the madrat environment. The madrat environment behaves
similar like global options, except that 1) messages will also be stored in cache files and restored
when a cache file is being loaded and 2) messages are always stored in lists with messages split by
function calls where the message was triggered.

Usage

resetMadratMessages(name = NULL, fname = NULL)

retrieveData 47

Arguments

name The category for which the messages should be reset (if not set messages in all
categories will be reset)

fname function name for which the entries should be reset (if not specified messages
for all function names will be reset)

Author(s)

Jan Philipp Dietrich

See Also

putMadratMessage, getMadratMessage

Examples

putMadratMessage("test", "This is a toast", fname = "readTau")
getMadratMessage("test", fname = "calcTauTotal")
resetMadratMessages("test")

retrieveData retrieveData

Description

Function to retrieve a predefined collection of calculations for a specific regionmapping.

Usage

retrieveData(
model,
rev = 0,
dev = "",
cachetype = "def",
puc = identical(dev, ""),
strict = FALSE,
renv = TRUE,
...

)

Arguments

model The names of the model for which the data should be provided (e.g. "magpie").

rev data revision which should be used/produced. Will be converted to numeric_version.

dev development suffix to distinguish development versions for the same data revi-
sion. This can be useful to distinguish parallel lines of development.

48 retrieveData

cachetype defines what cache should be used. "rev" points to a cache shared by all calcu-
lations for the given revision and sets forcecache to TRUE, "def" points to the
cache as defined in the current settings and does not change forcecache setting.

puc Boolean deciding whether a fitting puc file (if existing) should be read in and if
a puc file (if not already existing) should be created.

strict Boolean which allows to trigger a strict mode. During strict mode warnings will
be taken more seriously and will cause 1. to have the number of warnings as
prefix of the created tgz file and 2. will prevent retrieveData from creating a
puc file.

renv Boolean which determines whether calculations should run within a renv en-
vironment (recommended) or not (currently only applied in pucAggregate). If
activated, renv will check which packages in which versions were used to create
the puc file, download, install and load these packages and run the aggregation
with them. Otherwise, the packages in the currently used environment are being
used.

... (Optional) Settings that should be changed using setConfig (e.g. regionmap-
ping). or arguments which should be forwarded to the corresponding fullXYZ
function (Please make sure that argument names in full functions do not match
settings in setConfig!)

Value

Invisibly, the path to the newly created tgz archive.

Note

The underlying full-functions can optionally provide a list of information back to retrieveData.
Following list entries are currently supported:

• tag (optional) - additional name tag which will be included in the file name of the aggregated
collection (resulting tgz-file). This can be useful to highlight information in the file name
which otherwise would not be visible.

• pucTag (optional) - identical purpose as tag but for the resulting unaggregated collections
(puc-files).

Author(s)

Jan Philipp Dietrich, Lavinia Baumstark

See Also

calcOutput,setConfig

Examples

Not run:
retrieveData("example", rev = "2.1.1", dev = "test", regionmapping = "regionmappingH12.csv")

End(Not run)

robustOrder 49

robustOrder robustOrder, robustSort

Description

robustOrder: A wrapper around base::order that always uses the locale independent method =
"radix". If the argument x is a character vector it is converted to utf8 first. robustSort: A con-
venience function using order to sort a vector using radix sort. The resulting vector will have the
same encoding as the input although internally character vectors are converted to utf8 before order-
ing.

Usage

robustOrder(..., na.last = TRUE, decreasing = FALSE, method = "radix")

Arguments

... One or more vectors of the same length

na.last If TRUE missing values are put last, if FALSE they are put first, if NA they are
removed

decreasing If TRUE decreasing/descending order, if FALSE increasing/ascending order.
For the "radix" method, this can be a vector of length equal to the number of
arguments in For the other methods, it must be length one.

method Default is "radix", which is locale independent. The alternatives "auto" and
"shell" should not be used in madrat because they are locale dependent.

Author(s)

Pascal Sauer

See Also

order

setConfig setConfig

Description

This function manipulates the current madrat configuration. In general, NULL means that the
argument remains as it is whereas all other inputs will overwrite the current setting. For values
which can be reset to NULL (currently only "extramappings") you can achieve a reset by setting
the value to "".

50 setConfig

Usage

setConfig(
regionmapping = NULL,
extramappings = NULL,
packages = NULL,
globalenv = NULL,
enablecache = NULL,
verbosity = NULL,
mainfolder = NULL,
sourcefolder = NULL,
cachefolder = NULL,
mappingfolder = NULL,
outputfolder = NULL,
pucfolder = NULL,
tmpfolder = NULL,
nolabels = NULL,
forcecache = NULL,
ignorecache = NULL,
cachecompression = NULL,
hash = NULL,
diagnostics = NULL,
debug = NULL,
maxLengthLogMessage = NULL,
redirections = NULL,
.cfgchecks = TRUE,
.verbose = TRUE,
.local = FALSE

)

localConfig(...)

Arguments

regionmapping The name of the csv file containing the region mapping that should be used for
aggregation (e.g. "regionmappingREMIND.csv").

extramappings Names of additional mappings supplementing the given region mapping. This
allows for additional aggregation levels such as subnational aggregation.

packages A character vector with packages in which corresponding read and calc func-
tions should be searched for

globalenv Boolean deciding whether sources/calculations in the global environment should
be included or not

enablecache Is deprecated and will be ignored. Please use ignorecache instead.

verbosity an integer value describing the verbosity of the functions (2 = full information,
1 = only warnings and execution information, 0 = only warnings, -1 = no infor-
mation)

mainfolder The mainfolder where all data can be found and should be written to.

setConfig 51

sourcefolder The folder in which all source data is stored (in sub-folders with the name of the
source as folder name). In the default case this argument is set to NA meaning
that the default folder should be used which is <mainfolder>/sources

cachefolder The folder in which all cache files should be written to. In the default case this
argument is set to NA meaning that the default folder should be used which is
<mainfolder>/cache

mappingfolder A folder containing all kinds of mappings (spatial, temporal or sectoral). In the
default case this argument is set to NA meaning that the default folder should be
used which is <mainfolder>/mappings

outputfolder The folder all outputs should be written to. In the default case this argument
is set to NA meaning that the default folder should be used which is <main-
folder>/output

pucfolder The path where portable unaggregated collection (puc) files are located. NA by
default, which means <mainfolder>/puc

tmpfolder Path to a temp folder for temporary storage of files. By default set to <main-
folder>/tmp

nolabels vector of retrieve models (e.g. "EXAMPLE" in case of "fullEXAMPLE") which
should NOT apply a replacement of known hashes with given code labels

forcecache Argument that allows to force madrat to read data from cache if the correspond-
ing cache files exist. It is either a boolean to fully activate or deactivate the
forcing or a vector of files (e.g. readTau, calcTauTotal) or type (e.g. Tau, Tau-
Total) that should be read from cache in any case.

ignorecache Argument that allows madrat to ignore the forcecache argument for the given
vector of files (e.g. readTau, calcTauTotal) or types (e.g. Tau, TauTotal) called
by calcOutput or readSource. The top level function must always be part of this
list.

cachecompression

logical or character string specifying whether cache files use compression. TRUE
corresponds to gzip compression, and character strings "gzip", "bzip2" or "xz"
specify the type of compression.

hash specifies the used hashing algorithm. Default is "xxhash32" and all algorithms
supported by digest can be used.

diagnostics Either FALSE (default) to avoid the creation of additional log files or a file name
for additional diagnostics information (without file ending).

debug Boolean which activates a debug mode. In debug mode all calculations will be
executed with try=TRUE so that calculations do not stop even if the previous
calculation failed. This can be helpful to get a full picture of errors rather than
only seeing the first one. In addition debug=TRUE will add the suffix "debug"
to the files created to avoid there use in productive runs. Furthermore, with
debug=TRUE calculations will be rerun even if a corresponding tgz file already
exists.

maxLengthLogMessage

in log messages evaluated arguments are printed if the resulting message is
shorter than this value, otherwise arguments are shown as passed, potentially
with unevaluated variable names

52 toolAggregate

redirections A list of source folder redirections, intended to be set by redirectSource. See
that function’s documentation for more details.

.cfgchecks boolean deciding whether the given inputs to setConfig should be checked for
consistency or just be accepted (latter is only necessary in very rare cases and
should not be used in regular cases)

.verbose boolean deciding whether status information/updates should be shown or not

.local boolean deciding whether options are only changed until the end of the current
function execution OR environment for which the options should get changed.

... Arguments forwarded to setConfig

Functions

• localConfig(): A wrapper for setConfig(..., .local = TRUE)

Note

setConfig must only be used before the data processing is started and changes in the configuration
from within a download-, read-, correct-, convert-, calc-, or full-function are not allowed! Only
allowed configuration update is to add another extramapping via addMapping. Currently the use
of setConfig within any of these functions will trigger a warning, which is planned to be converted
into an error message in one of the next package updates!

Author(s)

Jan Philipp Dietrich

See Also

getConfig, getISOlist

Examples

Not run:
setConfig(forcecache = c("readSSPall", "convertSSPall"))

End(Not run)

toolAggregate toolAggregate

Description

(Dis-)aggregates a magclass object from one resolution to another based on a relation matrix or
mapping

toolAggregate 53

Usage

toolAggregate(
x,
rel,
weight = NULL,
from = NULL,
to = NULL,
dim = 1,
wdim = NULL,
partrel = FALSE,
negative_weight = "warn",
mixed_aggregation = FALSE,
verbosity = 1,
zeroWeight = "warn"

)

Arguments

x magclass object that should be (dis-)aggregated

rel relation matrix, mapping or file containing a mapping in a format supported by
toolGetMapping (currently csv, rds or rda). A mapping object consists of any
number of columns, where one column contains all the elements in x. These
elements are mapped to the corresponding values in another column, as de-
scribed below (see parameter ’from’). It is possible to not set rel as long as
to is set and dim is chosen appropriately. In that case the relation mapping is
extracted from the dimnames of the corresponding dimension, e.g. if your data
contains a spatial subdimension "country" you can aggregate to countries via
toolAggregate(x, to = "country", dim = 1).

weight magclass object containing weights which should be considered for a weighted
aggregation. The provided weight should only contain positive values, but does
not need to be normalized (any positive number>=0 is allowed). Please see the
"details" section below for more information.

from Name of source column to be used in rel if it is a mapping (if not set the first
column matching the data will be used).

to Name of the target column to be used in rel if it is a mapping (if not set the
column following column from will be used If column from is the last column,
the column before from is used). If data should be aggregated based on more
than one column these columns can be specified via "+", e.g. "region+global" if
the data should be aggregated to column regional as well as column global. If
rel is missing to refers to the aggregation target dimension name.

dim Specifying the dimension of the magclass object that should be (dis-)aggregated.
Either specified as an integer (1=spatial,2=temporal,3=data) or if you want to
specify a sub dimension specified by name of that dimension or position within
the given dimension (e.g. 3.2 means the 2nd data dimension, 3.8 means the 8th
data dimension).

54 toolAggregate

wdim Specifying the according weight dimension as chosen with dim for the aggre-
gation object. If set to NULL the function will try to automatically detect the
dimension.

partrel If set to TRUE allows that the relation matrix does contain less entries than x
and vice versa. These values without relation are lost in the output.

negative_weight

Describes how a negative weight should be treated. "allow" means that it just
should be accepted (dangerous), "warn" returns a warning and "stop" will throw
an error in case of negative values

mixed_aggregation

boolean which allows for mixed aggregation (weighted mean mixed with sum-
mations). If set to TRUE weight columns filled with NA will lead to summation.

verbosity Verbosity level of messages coming from the function: -1 = error, 0 = warning,
1 = note, 2 = additional information, >2 = no message

zeroWeight Describes how a weight sum of 0 for a category/aggregation target should be
treated. "allow" accepts it and returns 0 (dangerous), "setNA" returns NA,
"warn" throws a warning, "stop" throws an error.

Details

Basically toolAggregate is doing nothing more than a normal matrix multiplication which is taking
into account the 3 dimensional structure of MAgPIE objects. So, you can provide any kind of rela-
tion matrix you would like. However, for easier usability it is also possible to provide weights for
a weighted (dis-)aggregation as a MAgPIE object. In this case rel must be a 1-0-matrix or a map-
ping between both resolutions. The weight needs to be provided in the higher spatial aggregation,
meaning for aggregation the spatial resolution of your input data and in the case of disaggregation
the spatial resolution of your output data. The temporal and data dimension must be either identical
to the resolution of the data set that should be (dis-)aggregated or 1. If the temporal and/or data
dimension is 1 this means that the same transformation matrix is applied for all years and/or all
data columns. In the case that a column should be just summed up instead of being calculated as
a weighted average you either do not provide any weight (then all columns are just summed up) or
your set this specific weighting column to NA and mixed_aggregation to TRUE.

Value

the aggregated data in magclass format

Author(s)

Jan Philipp Dietrich, Ulrich Kreidenweis

See Also

calcOutput

toolCodeLabels 55

Examples

create example mapping
p <- magclass::maxample("pop")
mapping <- data.frame(from = magclass::getItems(p, dim = 1.1),

region = rep(c("REG1", "REG2"), 5),
global = "GLO")

print(mapping)

run aggregation
toolAggregate(p, mapping)
weighted aggregation
toolAggregate(p, mapping, weight = p)
combined aggregation across two columns
toolAggregate(p, mapping, to = "region+global")

toolCodeLabels Tool: CodeLabels

Description

This function replaces a hash code (e.g. regioncode) or another cryptic code with a human readable
code via a given dictionary. This can be useful to make outputs better readable in cases where hash
codes are already known to the user. If no entry exists in the dictionary the hash code is returned
again.

Usage

toolCodeLabels(get = NULL, add = NULL)

Arguments

get A vector of hash codes which should be replaced

add Additional entries that should be added to the dictionary. Need to be pro-
vided in the form of a named vector with the structure c(<label>=<hash>), e.g.
c(h12="62eff8f7")

Value

A vector with either labels (if available) or hash codes (if no label was available).

Author(s)

Jan Philipp Dietrich

See Also

regionscode

56 toolConvertMapping

Examples

toolCodeLabels("62eff8f7")

toolConditionalReplace

toolConditionalReplace

Description

Sets values (NA, negative, ..) to value replaceby

Usage

toolConditionalReplace(x, conditions, replaceby = 0)

Arguments

x magpie object

conditions vector of conditions for values, that should be removed e.g. "is.na()", "< 0"
(order matters)

replaceby value which should be used instead (can be a vector of same length as conditions
as well)

Value

return changed input data

Author(s)

Kristine Karstens

toolConvertMapping Tool: ConvertMapping

Description

Function which converts mapping files between formats

Usage

toolConvertMapping(name, format = "rds", type = NULL, where = "mappingfolder")

toolCountry2isocode 57

Arguments

name File name of the mapping file. Supported file types are currently csv (, or ;
separated), rds and rda (which needs to have the data stored with the object
name "data"!).

format format it should be converted to. Available is "csv", "rds" or "rda".
type Mapping type (e.g. "regional", "cell", or "sectoral"). Can be set to NULL if file

is not stored in a type specific subfolder
where location to look for the mapping, either "mappingfolder" or the name of a pack-

age which contains the mapping

Author(s)

Jan Philipp Dietrich

See Also

calcOutput, toolConvertMapping

toolCountry2isocode toolCountry2isocode

Description

Function used to convert country names from the long name to the ISO 3166-1 alpha 3 country code

Usage

toolCountry2isocode(
country,
warn = TRUE,
ignoreCountries = NULL,
type = NULL,
mapping = NULL

)

Arguments

country A vector of country names
warn whether warnings should be printed now or in the end of the whole process as

notes
ignoreCountries

A vector of country names/codes that exist in the data and that should be re-
moved but without creating a warning (they will be removed in any case). You
should use that argument if you are certain that the given entries should be actu-
ally removed from the data.

type deprecated and will be removed soon!
mapping additional mappings as a names vector

58 toolCountryFill

Value

the ISO 3166-1 alpha 3 country code

Author(s)

Jan Philipp Dietrich, Anastasis Giannousakis

See Also

readSource,getSources

Examples

toolCountry2isocode("Germany")
toolCountry2isocode(c("Germany","Fantasyland"),mapping=c("Fantasyland"="BLA"))

toolCountryFill Tool: CountryFill

Description

This function expects a MAgPIE object with ISO country codes in the spatial dimension. These
ISO codes are compared with the official ISO code country list (stored as supplementary data in the
madrat package). If there is an ISO code in the data but not in the official list this entry is removed,
if an entry of the official list is missing in the data this entry is added and set to the value of the
argument fill.

Usage

toolCountryFill(
x,
fill = NA,
no_remove_warning = NULL,
overwrite = FALSE,
verbosity = 1,
countrylist = NULL,
...

)

Arguments

x MAgPIE object with ISO country codes in the spatial dimension

fill Number which should be used for filling the gaps of missing countries.
no_remove_warning

A vector of non-ISO country codes that exist in the data and that should be
removed by CountryFill but without creating a warning (they will be removed
in any case). You should use that argument if you are certain that the given
entries should be actually removed from the data.

toolendmessage 59

overwrite logical deciding whether existing data should be overwritten, if there is a specific
mapping provided for that country, or not

verbosity verbosity for information about filling important countries. 0 = warning will
show up (recommended if filling of important countries is not expected), 1 =
note will show up in reduced log file (default), 2 = info will show up in ex-
tended log file (recommended if filling of important countries is not critical and
desired).

countrylist character vector of official country names (if other than ISO)

... Mappings between countries for which the data is missing and countries from
which the data should be used instead for these countries (e.g. "HKG"="CHN"
if Hong Kong should receive the value of China). This replacement usually only
makes sense for intensive values. Can be also provided as a argument called
"map" which contains a named vector of these mappings.

Value

A MAgPIE object with spatial entries for each country of the official ISO code country list.

Author(s)

Jan Philipp Dietrich

Examples

library(magclass)
x <- new.magpie("DEU", 1994, "bla", 0)
y <- toolCountryFill(x, 99)

toolendmessage Tool: End message

Description

This function writes a process end message and performs some diagnostics. It is always called after
a corresponding call to toolstartmessage.

Usage

toolendmessage(startdata, level = NULL)

Arguments

startdata a list containing diagnostic information provided by toolstartmessage

level This argument allows to establish a hierarchy of print statements. The hierarchy
is preserved for the next vcat executions. Currently this setting can have 4 states:
NULL (nothing will be changed), 0 (reset hierarchies), "+" (increase hierarchy
level by 1) and "-" (decrease hierarchy level by 1).

60 toolFillWithRegionAvg

Author(s)

Jan Philipp Dietrich

See Also

toolstartmessage, vcat

toolFillWithRegionAvg Tool: FillWithRegionAvg

Description

This function fills missing values for countries with the (weighted) average of the respective region.
The average is computed separately for every timestep. Currently only inputs with one data dimen-
sion are allowed as inputs. (If the filling should be performed over multiple data dimensions, call
this function multiple times and bind the results together with magclass::mbind.)

Usage

toolFillWithRegionAvg(
x,
valueToReplace = NA,
weight = NULL,
callToolCountryFill = FALSE,
regionmapping = NULL,
verbose = TRUE,
warningThreshold = 0.5,
noteThreshold = 1

)

Arguments

x MAgPIE object with country codes in the first and time steps in the second
dimension.

valueToReplace value that denotes missing data. Defaults to NA.

weight MAgPIE object with weights for the weighted average. Must contain at least all
the countries and years present in x. If no weights are specified, an unweighted
average is performed.

callToolCountryFill

Boolean variable indicating whether the list of countries should first be filled to
the official ISO code country list. Subsequently the newly added and previously
missing values are filled with the region average.

regionmapping Data frame containing the mapping between countries and regions. Expects
column names CountryCode and RegionCode. Uses the currently set mapping
if no mapping is specified.

toolFillYears 61

verbose Boolean variable indicating if the function should print out what it is doing. Can
generate a lot of output for a large object.

warningThreshold

If more than this fraction of the countries in a given region and timestep have a
missing value, throw a warning.

noteThreshold If more than this fraction of the countries in a given region and timestep have a
missing value, a note will be written.

Details

toolFillWithRegionAvg can be used in conjunction with toolCountryFill() to first fill up the list of
countries to the official ISO code country list, and then fill values with the regional average (see
callToolCountryFill Option).

Value

A MAgPIE object with the missing values filled.

Author(s)

Bjoern Soergel, Lavinia Baumstark, Jan Philipp Dietrich

Examples

x <- magclass::new.magpie(cells_and_regions = c("A", "B", "C", "D"), years = c(2000, 2005),
fill = c(1, NA, 3, 4, 5, 6, NA, 8))

rel <- data.frame(CountryCode = c("A", "B", "C", "D"), RegionCode = c("R1", "R1", "R1", "R2"))
xfilled <- toolFillWithRegionAvg(x, regionmapping = rel)

toolFillYears toolFillYears

Description

Inter- and extrapolates a historical dataset for a given time period.

Usage

toolFillYears(x, years)

Arguments

x MAgPIE object to be continued.

years vector of years as digits or in mag year format

Value

MAgPIE object with completed time dimensionality.

62 toolGetMapping

Author(s)

Kristine Karstens

toolGetMapping Tool: GetMapping

Description

Function which retrieves a mapping file

Usage

toolGetMapping(
name,
type = NULL,
where = NULL,
error.missing = TRUE,
returnPathOnly = FALSE,
activecalc = NULL

)

Arguments

name File name of the mapping file. Supported file types are currently csv (, or ;
separated), rds and rda (which needs to have the data stored with the object
name "data"!). Use toolConvertMapping to convert between both formats

type Mapping type (e.g. "regional", "cell", or "sectoral"). Can be set to NULL if file
is not stored in a type specific subfolder

where location to look for the mapping, either "mappingfolder", "local" (if the path
is relative to your current directory) or the name of a package which contains
the mapping. If set to NULL it will first try "local", then "mappingfolder" and
afterwards scan all packages currently listed in getConfig("packages")

error.missing Boolean which decides whether an error is returned if the mapping file does not
exist or not.

returnPathOnly If set to TRUE only the file path is returned

activecalc If set, this argument helps to define the first package within which the mapping
has to be sought for. This happens via finding in which package the active calc
function is located.

Value

the mapping as a data frame

Author(s)

Jan Philipp Dietrich

toolISOhistorical 63

See Also

calcOutput, toolConvertMapping

Examples

head(toolGetMapping("regionmappingH12.csv", where = "madrat"))

toolISOhistorical Tool: ISOhistorical

Description

This function expects a MAgPIE object with ISO country codes in the spatial dimension. For this
MAgPIE object the time of transition is calculated and for each the historic time filled by using
the mapping stored as supplementary data in the madrat package. If you want to use a different
mapping please specify it in the argument mapping

Usage

toolISOhistorical(
m,
mapping = NULL,
additional_mapping = NULL,
overwrite = FALSE,
additional_weight = NULL

)

Arguments

m MAgPIE object with ISO country codes in the spatial dimension

mapping mapping of historical ISO countries to the standard ISO country list. For the
default setting (mapping=NULL) the mapping stored as supplementary data in
the madrat package is used. If provided as file the mapping needs to contain
three columns "fromISO", "toISO" and "lastYear".

additional_mapping

vector or list of vectors to provide some specific mapping, first the old country
code, second the new country code and last the last year of the old country,
e.g. additional_mapping = c("TTT","TTX","y1111") or additional_mapping =
list(c("TTT","TTX","y1111"),c("TTT","TTY","y1111"))

overwrite if there are already historical data in the data source for years that are calculated
in this function they will not be overwritten by default. To overwrite all data
(e.g. if there are meaningless "0") choose overwrite=TRUE

additional_weight

optional weight to be used for regional disaggregation, if not provided, the val-
ues of m in the "lastYear" are used as weight

64 toolManualDownload

Value

A MAgPIE object with spatial entries for each country of the official ISO code country list. Histor-
ical time is filled up, old countries deleted

Author(s)

Lavinia Baumstark

toolManualDownload Tool: ManualDownload

Description

Support tool for the creation of download functions in cases where a fully automated data download
is not an option (e.g. due to a missing API). The function can be used to print a step-by-step guide
for the user how to manually retrieve the data and then asks for a (local) path where the data can be
copied from.

Usage

toolManualDownload(
instructions,
intro = "Data must be downloaded manually",
request = "Enter full path to the downloaded data:"

)

Arguments

instructions Download instructions in form of a character vector describing how to manually
retrieve the data.

intro Introductory sentence to be shown first. Will not show up if set to NULL.
request A prompt which should show up after the instructions to ask for the local down-

load location.

Author(s)

Jan Philipp Dietrich

See Also

downloadSource

Examples

Not run:
toolManualDownload(c("Log into website ABC",

"Download the data set XYZ"))

End(Not run)

toolNAreplace 65

toolNAreplace Tool: NA replace

Description

Functions removes NAs, NaNs and infinite values in x and weight

Usage

toolNAreplace(x, weight = NULL, replaceby = 0, val.rm = NULL)

Arguments

x data

weight aggregation weight

replaceby value which should be used instead of NA. Either a single value or a MAgPIE
object which can be expanded to the size of x (either same size or with lower
dimensionality).

val.rm vector of values that should in addition be removed in x

Value

a list containing x and weight

Author(s)

Benjamin Bodirsky, Jan Philipp Dietrich

See Also

calcOutput

toolOrderCells toolOrderCells

Description

reorder numbered spatial units (cells, clusters) by number. Function will return the unmodified
object, if the given subdimension does not exist or does not contain cell information.

Usage

toolOrderCells(x, dim = 1.2, na.rm = FALSE)

66 toolSplitSubtype

Arguments

x magclass object that should be ordered

dim subdimension which contains the cell information

na.rm boolean deciding how to deal with non-integer information in cellular column. If
FALSE, non-integer values will lead to a return of the unsorted object, if TRUE
non-integer cells will be removed from the data set and the rest will get sorted

Value

ordered data in magclass format

Author(s)

Kristine Karstens, Jan Philipp Dietrich

toolSplitSubtype Tool: SplitSubtype

Description

This function can split a subtype string into smaller entities based on a given separator and check
whether these entities exist in a reference list

Usage

toolSplitSubtype(subtype, components, sep = ":")

Arguments

subtype A character string which can be split with the given separator into smaller enti-
ties

components A named list with the same length as the subtype has entities. Names of the list
are used as names of the entities while the content of each list element represents
the allowed values of that given entity. If all values are allowed use NULL as
entry.

sep separator to be used for splitting

Value

A named list with the different entities of the given subtype

Author(s)

Jan Philipp Dietrich

toolstartmessage 67

Examples

toolSplitSubtype("mymodel:myversion:myworld", list(model=c("mymodel","notmymodel"),
version=c("myversion","42"),
world="myworld"))

toolstartmessage Tool: Start message

Description

This function writes a process start message (what function was called with which arguments) and
stores the current time, so the corresponding call to toolendmessage can calculate the elapsed time.

Usage

toolstartmessage(functionName, argumentValues, level = NULL)

Arguments

functionName The name of the calling function as a string.

argumentValues A list of the evaluated arguments of the calling function.

level This argument allows to establish a hierarchy of print statements. The hierarchy
is preserved for the next vcat executions. Currently this setting can have 4 states:
NULL (nothing will be changed), 0 (reset hierarchies), "+" (increase hierarchy
level by 1) and "-" (decrease hierarchy level by 1).

Value

A list containing diagnostic information required by toolendmessage.

Author(s)

Jan Philipp Dietrich, Pascal Sauer

See Also

toolendmessage, vcat

Examples

innerFunction <- function() {
startinfo <- madrat:::toolstartmessage("innerFunction", list(argumentsToPrint = 123), "+")
vcat(1, "inner")
madrat:::toolendmessage(startinfo, "-")

}
outerFunction <- function() {

startinfo <- madrat:::toolstartmessage("outerFunction", list(), "+")

68 toolSubtypeSelect

vcat(1, "outer")
innerFunction()
madrat:::toolendmessage(startinfo, "-")

}
outerFunction()

toolSubtypeSelect Tool: SubtypeSelect

Description

This function is a support function for the selection of a subtype in a readX function. In addition to
the subtype selection it also performs some consistency checks.

Usage

toolSubtypeSelect(subtype, files)

Arguments

subtype A chosen subtype (character)

files A named vector or list. The names of the vector correspond to the allowed
subtypes and the content of the vector are the corresponding file names.

Value

The file name corresponding to the given subtype

Author(s)

Jan Philipp Dietrich

See Also

readSource

Examples

files <- c(protection="protection.csv",
production="production.csv",
extent="forest_extent.csv")

toolSubtypeSelect("extent",files)

toolTimeAverage 69

toolTimeAverage toolTimeAverage

Description

average over time given an averaging range. Only works for data with equidistant time steps!

Usage

toolTimeAverage(x, averaging_range = NULL, cut = TRUE, annual = NULL)

Arguments

x magclass object that should be averaged with equidistant time steps
averaging_range

number of time steps to average

cut if TRUE, all time steps at the start and end that can not be averaged correctly,
will be removed if FALSE, time steps at the start and end will be averaged with
high weights for start and end points

annual deprecated. Please don’t use it!

Value

the averaged data in magclass format

Author(s)

Kristine Karstens, Jan Philipp Dietrich

toolTimeSpline toolTimeSpline

Description

Smoothing a data set by replacing its values by its spline approximation using the given degrees of
freedom.

Usage

toolTimeSpline(x, dof = NULL)

Arguments

x magclass object that should be smoothed via a spline approximation

dof degrees of freedom per 100 years (similiar to an average range), is a proxy for
the smoothness of the spline (smaller values = smoother)

70 toolXlargest

Value

approximated data in magclass format

Author(s)

Kristine Karstens, Felicitas Beier

toolXlargest toolXlargest

Description

Selects the countries with the highest values in a magpie object

Usage

toolXlargest(x, range = 1:20, years = NULL, elements = NULL, ...)

Arguments

x magclass object that shall be used for ranking

range the position of the countries in the top X which should be returned.

years range of years that shall be summed for ranking. If NULL, the sum of all years
is used.

elements range of elements that shall be summed for ranking. If NULL, all elements are
used.

... further parameters will be handed on to calcOutput function type.

Value

vector with ISO country codes

Author(s)

Benjamin Leon Bodirsky, Jan Philipp Dietrich

Examples

toolXlargest(magclass::maxample("pop"), range = 1:3)

vcat 71

vcat Tool: Verbosity Cat

Description

Function which returns information based on the verbosity setting

Usage

vcat(
verbosity,
...,
level = NULL,
fill = TRUE,
show_prefix = TRUE,
logOnly = FALSE

)

Arguments

verbosity The lowest verbosity level for which this message should be shown (verbosity =
-1 means no information at all, 0 = only warnings, 1 = warnings and execution
information, 2 = full information). If the verbosity is set to 0 the message is
written as warning, if the verbosity is set higher than 0 it is written as a normal
cat message.

... The message to be shown

level This argument allows to establish a hierarchy of print statements. The hierarchy
is preserved for the next vcat executions. Currently this setting can have 4 states:
NULL (nothing will be changed), 0 (reset hierarchies), "+" (increase hierarchy
level by 1) and "-" (decrease hierarchy level by 1).

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by "\n" are
printed. Otherwise, the output is broken into lines with print width equal to the
option width if fill is TRUE, or the value of fill if this is numeric. Non-positive
fill values are ignored, with a warning.

show_prefix a logical defining whether a content specific prefix (e.g. "NOTE") should be
shown in front of the message or not. If prefix is not shown it will also not show
up in official statistics.

logOnly option to only log warnings and error message without creating warnings or
errors (expert use only).

Author(s)

Jan Philipp Dietrich

72 visualizeDependencies

See Also

readSource

Examples

Not run:
vcat(2, "Hello world!")

End(Not run)

visualizeDependencies visualizeDependencies

Description

Creates a graphical visualization of dependencies between functions in the mr-universe.

Usage

visualizeDependencies(
...,
direction = "both",
order = 2,
filter = NULL,
packages = getConfig("packages"),
filename = NULL

)

Arguments

... function(s) to be analyzed

direction Character string, either “in”, “out” or "both". If “in” all sources feeding into the
function are listed. If “out” consumer of the function are listed. If “both” the
union of "in" and "out" is returned.

order order of dependencies. Order 1 would be only functions directly called from (in
case of direction "in") or directly calling (in case of direction "out") are shown.
Order 2 will also show direct dependencies of the order 1 dependencies, order 3
also the direct dependencies from order 2 dependencies, etc.

filter regular expression to describe elements which should be excluded from visual-
ization (e.g. "^tool" to exclude all tool functions)

packages packages to use when searching dependencies

filename If a filename is provided, the resulting graph will be saved

Author(s)

Debbora Leip, Jan Philipp Dietrich

withMadratLogging 73

See Also

getDependencies, getMadratGraph, getMadratInfo

withMadratLogging Tool: withMadratLogging

Description

Function will activate madrat logging facilities for all code provided to this function. This means
that message, warning and stop calls will also report to the madrat log output

Usage

withMadratLogging(expr)

Arguments

expr expression to be evaluated.

Author(s)

Jan Philipp Dietrich

See Also

vcat

Examples

Not run:
madrat:::withMadratLogging(message("Hello world!"))

End(Not run)

Index

addMapping, 4, 52

cacheArgumentsHash, 5, 30
cacheCleanup, 6
cacheCopy, 7
cacheGet, 7
cacheName, 5, 8, 8, 9, 10
cachePut, 5, 8, 9, 9, 10
calcOutput, 10, 13, 20, 48, 54, 57, 63, 65
calcTauTotal, 12, 13, 14
compareData, 14
compareMadratOutputs, 14
convertTau, 13, 15

digest, 46, 51
downloadSource, 16, 41, 64

findBottlenecks, 18
fingerprint, 18, 46
fullEXAMPLE, 19

getCalculations, 10, 20, 20, 24, 25, 27, 28
getCode, 21, 25
getConfig, 22, 27, 29, 33, 36, 52
getDependencies, 23, 27, 73
getFlags, 24
getISOlist, 25, 52
getLinkFunction, 26
getLocation, 26
getMadratGraph, 7–9, 19, 22, 24, 27, 28, 73
getMadratInfo, 24, 28, 73
getMadratMessage, 28, 29, 47
getMainfolder, 29, 33
getNonDefaultArguments, 5, 30
getSourceFolder, 31
getSources, 16, 25, 31, 41, 58

initializeConfig, 23, 29, 32
installedMadratUniverse, 33
isWrapperActive, 34

localConfig, 39
localConfig (setConfig), 49

madapply, 34
madlapply, 35
madrat (madrat-package), 3
madrat-package, 3
madratAttach, 35
madratDetach (madratAttach), 35
madTempDir, 36
metadataGFZ, 37

numeric_version, 20, 47

order, 49

prepFunctionName, 37
pucAggregate, 38, 48
putMadratMessage, 39, 40, 47

readSource, 17, 19–21, 32, 38, 40, 42, 58, 68,
72

readTau, 13, 31, 41, 42, 43
redirect, 43, 44, 45
redirectSource, 31, 44, 52
redirectTau, 45
regionscode, 45, 55
resetMadratMessages, 46
retrieveData, 20, 38, 39, 47
robustOrder, 49
round(), 11

setConfig, 4, 5, 12, 14, 17, 20, 21, 23, 29, 32,
33, 36, 38, 41, 48, 49

setWrapperActive (isWrapperActive), 34
setWrapperInactive (isWrapperActive), 34
signif(), 11

toolAggregate, 52
toolCodeLabels, 46, 55
toolConditionalReplace, 56

74

INDEX 75

toolConvertMapping, 56, 57, 62, 63
toolCountry2isocode, 57
toolCountryFill, 58
toolendmessage, 59, 67
toolFillWithRegionAvg, 60
toolFillYears, 61
toolGetMapping, 53, 62
toolISOhistorical, 63
toolManualDownload, 64
toolNAreplace, 65
toolOrderCells, 65
toolSplitSubtype, 66
toolstartmessage, 30, 37, 59, 60, 67
toolSubtypeSelect, 68
toolTimeAverage, 69
toolTimeSpline, 69
toolXlargest, 70

vcat, 37, 60, 67, 71, 73
visualizeDependencies, 72

withMadratLogging, 73

	madrat-package
	addMapping
	cacheArgumentsHash
	cacheCleanup
	cacheCopy
	cacheGet
	cacheName
	cachePut
	calcOutput
	calcTauTotal
	compareData
	compareMadratOutputs
	convertTau
	downloadSource
	findBottlenecks
	fingerprint
	fullEXAMPLE
	getCalculations
	getCode
	getConfig
	getDependencies
	getFlags
	getISOlist
	getLinkFunction
	getLocation
	getMadratGraph
	getMadratInfo
	getMadratMessage
	getMainfolder
	getNonDefaultArguments
	getSourceFolder
	getSources
	initializeConfig
	installedMadratUniverse
	isWrapperActive
	madapply
	madlapply
	madratAttach
	madTempDir
	metadataGFZ
	prepFunctionName
	pucAggregate
	putMadratMessage
	readSource
	readTau
	redirect
	redirectSource
	redirectTau
	regionscode
	resetMadratMessages
	retrieveData
	robustOrder
	setConfig
	toolAggregate
	toolCodeLabels
	toolConditionalReplace
	toolConvertMapping
	toolCountry2isocode
	toolCountryFill
	toolendmessage
	toolFillWithRegionAvg
	toolFillYears
	toolGetMapping
	toolISOhistorical
	toolManualDownload
	toolNAreplace
	toolOrderCells
	toolSplitSubtype
	toolstartmessage
	toolSubtypeSelect
	toolTimeAverage
	toolTimeSpline
	toolXlargest
	vcat
	visualizeDependencies
	withMadratLogging
	Index

