Title: | Create GDP and Population Scenarios |
---|---|
Description: | Create GDP and population scenarios This package constructs the GDP and population scenarios used as drivers in both the REMIND and MAgPIE models. |
Authors: | Johannes Koch [aut, cre], Bjoern Soergel [aut], Deborra Leip [aut], Falk Benke [aut], Jan Philipp Dietrich [aut] |
Maintainer: | Johannes Koch <[email protected]> |
License: | LGPL (>= 3) |
Version: | 4.0.7 |
Built: | 2025-01-17 06:39:46 UTC |
Source: | https://github.com/pik-piam/mrdrivers |
Like all scenarios in mrdrivers, the GDP and GDP per capita scenarios are the result of a harmonization exercise
between past data and future projections. Together with the corresponding population scenarios
(see calcPopulation()
) they comprise a consistent set of scenarios.
By default the following scenarios are returned:
the SSPs, i.e. SSP1-5
the SDPs, i.e. SDP, SDP_EI, SDP_RC, and SDP_MC
See the vignette: vignette("scenarios")
for scenario options, definitions and references.
calcGDP( scenario = c("SSPs", "SDPs", "SSP2EU"), unit = toolGetUnitDollar(inPPP = TRUE), average2020 = TRUE, ... ) calcGDPpc( scenario = c("SSPs", "SDPs", "SSP2EU"), unit = toolGetUnitDollar(inPPP = TRUE), average2020 = TRUE, ... )
calcGDP( scenario = c("SSPs", "SDPs", "SSP2EU"), unit = toolGetUnitDollar(inPPP = TRUE), average2020 = TRUE, ... ) calcGDPpc( scenario = c("SSPs", "SDPs", "SSP2EU"), unit = toolGetUnitDollar(inPPP = TRUE), average2020 = TRUE, ... )
scenario |
A string (or vector of strings) designating the scenario(s) to be returned. Use
|
unit |
A string specifying the unit of GDP. Can be either:
In all cases, GDP is returned in millions. |
average2020 |
If TRUE (default), then the 2020 value is replaced by the 2018-2022 average. To be consistent, the yearly resolution is decreased to 5 year intervals. |
... |
Arguments passed on to |
magpie object with the requested output data either on country or on regional level depending on the choice of argument "aggregate" or a list of information if supplementary is set to TRUE.
toolGetScenarioDefinition()
for scenario options and definitions.
madrat::calcOutput()
for how to return supplementary information and other control options.
calcDriver()
, calcScenarioConstructor()
and calcHarmonizedData()
for how to create new scenarios
(for developers).
## Not run: # Return default scenarios calcOutput("GDP") calcOutput("GDPpc") # Return only the SSP2 GDP scenario calcOutput("GDP", scenario = "SSP2") ## End(Not run) ## Not run: calcOutput("GDPpc") ## End(Not run)
## Not run: # Return default scenarios calcOutput("GDP") calcOutput("GDPpc") # Return only the SSP2 GDP scenario calcOutput("GDP", scenario = "SSP2") ## End(Not run) ## Not run: calcOutput("GDPpc") ## End(Not run)
Like all scenarios in mrdrivers, the Population, Labour and Urban population share scenarios are the result of a harmonization exercise between past data and future projections.
By default the following scenarios are returned:
the SSPs, i.e. SSP1-5
the SDPs, i.e. SDP, SDP_EI, SDP_RC, and SDP_MC
See the vignette: vignette("scenarios")
for scenario options, definitions and references.
calcPopulation(scenario = c("SSPs", "SDPs", "SSP2EU"), ...) calcLabour(scenario = c("SSPs", "SDPs", "SSP2EU"), ...) calcUrban(scenario = c("SSPs", "SDPs", "SSP2EU"), asShare = TRUE, ...)
calcPopulation(scenario = c("SSPs", "SDPs", "SSP2EU"), ...) calcLabour(scenario = c("SSPs", "SDPs", "SSP2EU"), ...) calcUrban(scenario = c("SSPs", "SDPs", "SSP2EU"), asShare = TRUE, ...)
scenario |
A string (or vector of strings) designating the scenario(s) to be returned. Use
|
... |
Arguments passed on to |
asShare |
If TRUE (default) urban population shares are returned. If FALSE, then urban population in millions is returned. |
magpie object with the requested output data either on country or on regional level depending on the choice of argument "aggregate" or a list of information if supplementary is set to TRUE.
toolGetScenarioDefinition()
for scenario options and definitions.
madrat::calcOutput()
for how to return supplementary information and other control options.
calcDriver()
, calcScenarioConstructor()
and calcHarmonizedData()
for how to create new scenarios
(for developers).
## Not run: # Return the default scenarios calcOutput("Population") # Return only the SSP2 scenario calcOutput("Population", scenario = "SSP2") # Return the ISIMIP SSP scenarios calcOutput("Population", scenario = "ISIMIP", extension2150 = "none", aggregate = FALSE) ## End(Not run) ## Not run: calcOutput("Labour") ## End(Not run) ## Not run: calcOutput("Urban") ## End(Not run)
## Not run: # Return the default scenarios calcOutput("Population") # Return only the SSP2 scenario calcOutput("Population", scenario = "SSP2") # Return the ISIMIP SSP scenarios calcOutput("Population", scenario = "ISIMIP", extension2150 = "none", aggregate = FALSE) ## End(Not run) ## Not run: calcOutput("Labour") ## End(Not run) ## Not run: calcOutput("Urban") ## End(Not run)
Get a conversion factor to convert GDP in constant 2017 Int$PPP into constant 2017 US$MER. Use the "when" argument to switch the year of the conversion factor. Source = WDI. Countries with missing data are filled in with 1. Regional aggregation is weighed by GDP from WDI-MI in the year set by "when".
calcRatioPPP2MER(when = 2017)
calcRatioPPP2MER(when = 2017)
when |
An integer (defaults to 2017) specifying the year of the PPP2MER factor. |
magpie object with the requested output data either on country or on regional level depending on the choice of argument "aggregate" or a list of information if supplementary is set to TRUE.
## Not run: calcOutput("RatioPPP2MER") ## End(Not run)
## Not run: calcOutput("RatioPPP2MER") ## End(Not run)
Read-in data from the IMF's World Economic Outlook. Currently reading GDP per capita and current account balance data.
downloadIMF() readIMF() convertIMF(x, subtype = "all")
downloadIMF() readIMF() convertIMF(x, subtype = "all")
x |
MAgPIE object returned by readIMF |
subtype |
Use to filter the IMF data |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
## Not run: readSource("IMF") ## End(Not run)
## Not run: readSource("IMF") ## End(Not run)
Read-in GDP per-capita data from the publication James, Spencer L., Paul Gubbins, Christopher JL Murray, and Emmanuela Gakidou. 2012. "Developing a Comprehensive Time Series of GDP per Capita for 210 Countries from 1950 to 2015." Population Health Metrics 10 (1): 12. doi:10.1186/1478-7954-10-12.
downloadJames() readJames(subtype) convertJames(x, subtype)
downloadJames() readJames(subtype) convertJames(x, subtype)
subtype |
String indicating the data series |
x |
MAgPIE object returned by readJames |
The data is in Annex 3
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
## Not run: readSource("James", subtype = "gdp") ## End(Not run)
## Not run: readSource("James", subtype = "gdp") ## End(Not run)
Read in gdp or population data for minor islands (not included in big inventories) from a custom made data set that gets data from a variety of sources (e.g. CIA World Factbook, Insee, BEA, PRISM, and Woldometers).
downloadMissingIslands() readMissingIslands(subtype) convertMissingIslands(x, subtype)
downloadMissingIslands() readMissingIslands(subtype) convertMissingIslands(x, subtype)
subtype |
pop for population, or gdp for gdp |
x |
MAgPIE object returned by readMissingIslands |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
## Not run: readSource("MissingIslands", subtype = "pop") ## End(Not run)
## Not run: readSource("MissingIslands", subtype = "pop") ## End(Not run)
Read-in xlsx file from the World Bank's Population Estimates And Projections (PEAP) The PEAP data can't seemed to be accessed by the WDI::WDI package nor the World Bank's API directly. Manual download required from https://databank.worldbank.org/source/population-estimates-and-projections#
downloadPEAP() readPEAP() convertPEAP(x)
downloadPEAP() readPEAP() convertPEAP(x)
x |
MAgPIE object returned by readPEAP |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
Read UN population data.
downloadUN_PopDiv() readUN_PopDiv(subtype, subset = "estimates") convertUN_PopDiv(x)
downloadUN_PopDiv() readUN_PopDiv(subtype, subset = "estimates") convertUN_PopDiv(x)
subtype |
Either "pop" or "lab". |
subset |
Either "estimates" or "medium". |
x |
MAgPIE object returned from readUN_PopDiv |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
Download, read and convert WDI (World development indicators) data.
downloadWDI() readWDI(subtype) convertWDI(x, subtype)
downloadWDI() readWDI(subtype) convertWDI(x, subtype)
subtype |
A string. Type of WDI data that should be read. Use the World Bank indicator abbreviation. Available subtypes are:
|
x |
MAgPIE object returned by readWDI |
The workflow to update the WDI data is the following: call the download function manually, and rename the new WDI.rds file including the download date. Then change the file_name that is read by readWDI. This ensures, that the past data isn't changed between users.
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
madrat::readSource()
and madrat::downloadSource()
## Not run: readSource("WDI", subtype = "pop") ## End(Not run)
## Not run: readSource("WDI", subtype = "pop") ## End(Not run)
Read-in an ADB data as magclass object
readADB() convertADB(x, subtype = "all") downloadADB()
readADB() convertADB(x, subtype = "all") downloadADB()
x |
MAgPIE object returned from readADB |
subtype |
A string, either "all", "gdppc", "pop" |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
## Not run: readSource("ADB", subtype = "gdppc") ## End(Not run)
## Not run: readSource("ADB", subtype = "gdppc") ## End(Not run)
Read-in an SSP data as magclass object. Filter for subtype and subset in the convert Function to use common read cache (speeds up the compuations).
readSSP() convertSSP( x, subtype = "all", subset = c("SSP1", "SSP2", "SSP3", "SSP4", "SSP5") ) downloadSSP()
readSSP() convertSSP( x, subtype = "all", subset = c("SSP1", "SSP2", "SSP3", "SSP4", "SSP5") ) downloadSSP()
x |
MAgPIE object returned from readSSP |
subtype |
A string, either "all", "gdp", "pop", "lab", "urb" |
subset |
A vector of strings designating the scenarios. Defaults to c("SSP1", "SSP2", "SSP3", "SSP4", "SSP5"). "Historical Reference" is also available as a scenario. |
The read-in data, usually a magpie object. If supplementary is TRUE a list including the data and metadata is returned instead. The temporal and data dimensionality should match the source data. The spatial dimension should either match the source data or, if the convert argument is set to TRUE, should be on ISO code country level.
## Not run: readSource("SSP", subtype = "gdp") ## End(Not run)
## Not run: readSource("SSP", subtype = "gdp") ## End(Not run)
The most important and common "convert" operations are:
removing undefined countries,
substituting NAs, see the "substituteNAsWith" argument,
using default set names "iso3c", "year", and "variable",
fill in countries,
sort in chronological order.
toolGeneralConvert( x, useDefaultSetNames = TRUE, countryFillWith = 0, substituteNAsWith = 0, warn = TRUE, note = TRUE, ... )
toolGeneralConvert( x, useDefaultSetNames = TRUE, countryFillWith = 0, substituteNAsWith = 0, warn = TRUE, note = TRUE, ... )
x |
A magpie object. |
useDefaultSetNames |
TRUE or FALSE. |
countryFillWith |
|
substituteNAsWith |
|
warn |
TRUE or FALSE. |
note |
TRUE or FALSE. |
... |
Arguments passed on to |
A magpie object.
## Not run: toolGeneralConvert(x) ## End(Not run)
## Not run: toolGeneralConvert(x) ## End(Not run)
toolGetScenarioDefinition can be used to figure out which scenarios are made available by mrdrivers, and how they are constructed, i.e. what past data, future data and harmonization methods are used.
toolGetScenarioDefinition(driver = NULL, scen = NULL, aslist = FALSE)
toolGetScenarioDefinition(driver = NULL, scen = NULL, aslist = FALSE)
driver |
NULL or a character vector designating the driver for which information is to be returned. If NULL, information for all drivers is returned. Available drivers are:
|
scen |
NULL or a character vector designating the scenario for which information is to be returned. If NULL, information for all scenarios is returned. |
aslist |
TRUE or FALSE (default). If TRUE then the pastData, futureData and harmonization strings are returned as a list. |
A tibble with the driver and scenario information.
toolGetScenarioDefinition() toolGetScenarioDefinition(driver = "GDP") toolGetScenarioDefinition(scen = "SSP2") toolGetScenarioDefinition(driver = "Population", scen = "SSPs", aslist = TRUE)
toolGetScenarioDefinition() toolGetScenarioDefinition(driver = "GDP") toolGetScenarioDefinition(scen = "SSP2") toolGetScenarioDefinition(driver = "Population", scen = "SSPs", aslist = TRUE)
toolGetUnitDollar returns unit used for monetary values.
toolGetUnitDollar(returnOnlyBase = FALSE, inPPP = FALSE)
toolGetUnitDollar(returnOnlyBase = FALSE, inPPP = FALSE)
returnOnlyBase |
TRUE or FALSE (default). If true only the base year is returned (as string). |
inPPP |
TRUE or FALSE (default). If TRUE the the string ends in 'Int$PPP', instead of 'Int$MER'. |
A string with the monetary unit: constant 2017 US$MER.
toolGetUnitDollar() toolGetUnitDollar(inPPP = TRUE) toolGetUnitDollar(returnOnlyBase = TRUE)
toolGetUnitDollar() toolGetUnitDollar(inPPP = TRUE) toolGetUnitDollar(returnOnlyBase = TRUE)
Like all harmonization tools in mrdrivers, toolHarmonizeFuture takes two magpie objects, 'past' and 'future', and returns a single magpie object, i.e. the harmonized time-series. In this case, the harmonized time-series is always equal to 'future', in the years of 'future'. After that the harmonized time-series depends on the 'method' argument chosen.
toolHarmonizeFuture(past, future, method = "level")
toolHarmonizeFuture(past, future, method = "level")
past |
A magpie object. |
future |
A magpie object with only one scenario/datatype, i.e. the length of the third dimension should be 1. |
method |
A string defining the harmonization method:
|
A magpie object with the same dimensions as 'past'.
If the 'past' object has multiple scenarios/datatypes, i.e. the length of the third dimension is larger than 1, then the a harmonized time-series is created for every scenario/datatype in past. The same 'future' object is used in every case - hence the requirement that 'future' only have one scenario/datatype.
## Not run: toolHarmonizePast(past, future) ## End(Not run)
## Not run: toolHarmonizePast(past, future) ## End(Not run)
Like all harmonization tools in mrdrivers, toolHarmonizePast takes two magpie objects, 'past' and 'future', and returns a single magpie object, i.e. the harmonized time-series. In this case, the harmonized time-series is always equal to 'past', in the years of 'past'. After that the harmonized time-series depends on the 'method' argument chosen.
toolHarmonizePast(past, future, method = "level", yEnd = 2100)
toolHarmonizePast(past, future, method = "level", yEnd = 2100)
past |
A magpie object with only one scenario/datatype, i.e. the length of the third dimension should be 1. |
future |
A magpie object. |
method |
A string defining the harmonization method:
|
yEnd |
Additional input for "transition" method. Year by which the transition period is completed. |
A magpie object with the same dimensions as 'future'.
If the 'future' object has multiple scenarios/datatypes, i.e. the length of the third dimension is larger than 1, then the a harmonized time-series is created for every scenario/datatype in future. The same 'past' object is used in every case - hence the requirement that 'past' only have one scenario/datatype.
## Not run: toolHarmonizePast(past, future) ## End(Not run)
## Not run: toolHarmonizePast(past, future) ## End(Not run)