
Package: rmndt (via r-universe)
August 16, 2024

Title Tools for data.table objects in the REMIND context

Version 0.6.0

Description Helper functions for REMIND-related tasks with data.table
objects, e.g., interpolation and (dis-)aggregation.

Depends R (>= 3.1), data.table (>= 1.11.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests testthat, magclass, covr

Date 2024-04-18

Repository https://pik-piam.r-universe.dev

RemoteUrl https://github.com/pik-piam/rmndt

RemoteRef HEAD

RemoteSha 7adc50e4c27032db8f55a2384e2b86cb09782faa

Contents
rmndt-package . 2
aggregate_dt . 2
apply_weights . 3
approx_dt . 4
disaggregate_dt . 5
magpie2dt . 6
readMIF . 7
REMIND_FinalEnergy . 7
REMIND_GDP . 8
REMIND_RegionMap . 8
varcalc_dt . 9
writeMIF . 9

Index 11

1

2 aggregate_dt

rmndt-package rmndt: Tools for data.table objects in the REMIND context

Description

Helper functions for REMIND-related tasks with data.table objects, e.g., interpolation and (dis-
)aggregation.

Author(s)

Maintainer: Alois Dirnaichner <dirnaichner@pik-potsdam.de>

aggregate_dt Aggregate values in a data.table object using a mapping. If no weight
is given, the value for the aggregated categories is the sum of the parts.
Otherwise, the weight is used to calculate a weighted average accross
the parts.

Description

Aggregate values in a data.table object using a mapping. If no weight is given, the value for the
aggregated categories is the sum of the parts. Otherwise, the weight is used to calculate a weighted
average accross the parts.

Usage

aggregate_dt(
data,
mapping,
fewcol = "region",
yearcol = "year",
manycol = "iso",
datacols = "data",
valuecol = "value",
weights = NULL,
weightcol = "weight"

)

Arguments

data a magpie object.

mapping a mapping between the aggregated categories in the data and ISO3 countrycodes.
All regions in ‘data‘ have to be part of the mapping.

fewcol name of the column containing aggregated categories. Default is "region".

apply_weights 3

yearcol name of the column containing time step info. Default is "year".
manycol name of the column containing dis-aggregated categories. Default is "iso".
datacols index columns that label categories which have to be treated seperately when

aggregating with a weight.
valuecol name of the column with the value to aggregate, default is ‘value‘.
weights table with weights for a (weighted average) aggregation, the name of the column

with the aggregated categories has to be ‘manycol‘. If columns (other than the
column with the aggregated category) of the ‘weights‘ coincide with columns of
the data, the respective columns are considered when joining.

weightcol column with the weights for aggregation, default is ‘weight‘.

apply_weights Internal function to apply the weights and perform some checks.

Description

Internal function to apply the weights and perform some checks.

Usage

apply_weights(
data,
mapping,
weights,
fewcol,
manycol,
valuecol,
datacols,
weightcol

)

Arguments

data a data.table.
mapping a mapping between the aggregated categories and their parts. *All* aggregated

categories in ‘data‘ have to be part of the mapping.
weights table with weights for disaggregation, the name of the column with the aggre-

gated categories has to be ‘manycol‘. If columns (other than the column with
the aggregated category) of the ‘weights‘ coincide with columns of the data, the
respective columns are considered when joining.

fewcol name of the column containing aggregated categories. Default is "region".
manycol name of the column containing dis-aggregated categories. Default is "iso".
valuecol name of the column with the actual value to disaggregate, default is ‘value‘.
datacols index columns that label categories which have to be treated seperately when

dis-aggregating with a weight.
weightcol column with the weights for the dis-aggregation, default is ‘weight‘.

4 approx_dt

approx_dt Approximate missing values in a data.table.

Description

Similar to, but not quite like, ‘stats::approx‘. Does only support constant extrapolation and linear
interpolation. The resulting ‘data.table‘ only contains the range provided by ‘xdata‘ along ‘xcol‘.
Without extrapolation, ‘xcol‘ in the resulting ‘data.table‘ may not cover the range given by ‘xdata‘.

Usage

approx_dt(
dt,
xdata,
xcol,
ycol,
idxcols = NULL,
keepna = FALSE,
extrapolate = FALSE

)

Arguments

dt a data.table.

xdata the range to interpolate to. This is the range the result will have along the di-
mension ‘xcol‘.

xcol name of the column for interpolation.

ycol name of the column that contains the value to be interpolated.

idxcols columns that identify a row (besides xcol), i.e., the remaining index dimensions.

keepna keep NA values for rows that can not be interpolated (since they are outside of
[min(xcol), max(xcol)]), default is FALSE.

extrapolate use the closest values to fill ‘ycol‘ outside of the interpolation domain, default
is FALSE. This will also work if there is only one value along ‘ycol‘, i.e., no
interpolation is taking place.

Value

a data.table with the range given by ‘xdata‘ along ‘xcol‘. Columns not given in ‘idxcols‘ will be
kept but NAs will appear on extrapolated and interpolated rows.

Examples

dt <- as.data.table(ChickWeight)
delete all values but 1
dt[Chick == 1 & Time > 0, weight := NA]
delete all values but 2

disaggregate_dt 5

dt[Chick == 2 & Time > 2, weight := NA]

extrapolation from 1 value
approx_dt(dt, 0:21, "Time", "weight", idxcols=c("Chick", "Diet"), extrapolate = TRUE)[Chick == 1]
extrapolation and interpolation
approx_dt(dt, 0:21, "Time", "weight", idxcols=c("Chick", "Diet"), extrapolate = TRUE)[Chick == 2]
column not in idxcols
approx_dt(dt, 0:21, "Time", "weight", idxcols="Chick", extrapolate = TRUE)[Chick == 2]

dt <- as.data.table(ChickWeight)
interpolation only
approx_dt(dt, 0:21, "Time", "weight", idxcols=c("Chick", "Diet"))[Chick == 2]

disaggregate_dt Disaggregate data in a data.table object using a mapping. If no
weights are given, the value for the aggregated categories is used on
the disaggregated ones. If a weight is given, the values from the ag-
gregated categories are distributed according to the weights.

Description

Disaggregate data in a data.table object using a mapping. If no weights are given, the value for the
aggregated categories is used on the disaggregated ones. If a weight is given, the values from the
aggregated categories are distributed according to the weights.

Usage

disaggregate_dt(
data,
mapping,
fewcol = "region",
manycol = "iso",
valuecol = "value",
datacols = "data",
weights = NULL,
weightcol = "weight"

)

Arguments

data a data.table.

mapping a mapping between the aggregated categories and their parts. *All* aggregated
categories in ‘data‘ have to be part of the mapping.

fewcol name of the column containing aggregated categories. Default is "region".

manycol name of the column containing dis-aggregated categories. Default is "iso".

valuecol name of the column with the actual value to disaggregate, default is ‘value‘.

6 magpie2dt

datacols index columns that label categories which have to be treated seperately when
dis-aggregating with a weight.

weights table with weights for disaggregation, the name of the column with the aggre-
gated categories has to be ‘manycol‘. If columns (other than the column with
the aggregated category) of the ‘weights‘ coincide with columns of the data, the
respective columns are considered when joining.

weightcol column with the weights for the dis-aggregation, default is ‘weight‘.

magpie2dt Load a magpie object as data.table object with given colnames. Re-
places years by numeric values, removing the leading y.

Description

Load a magpie object as data.table object with given colnames. Replaces years by numeric values,
removing the leading y.

Usage

magpie2dt(
data,
regioncol = NULL,
yearcol = NULL,
datacols = NULL,
valcol = "value"

)

Arguments

data a magpie object.

regioncol name of the column containing REMIND regions, default is "region".

yearcol name of the column containing the year, default is "year".

datacols the names of the data dimension(s) of the magpie object. If no value is given,
the name provided in the magpie object is used.

valcol column to host actual value, default is "value"

Examples

Not run:
require(magpie)
dt <- magpie2dt(population_magpie)

End(Not run)

readMIF 7

readMIF Read a REMIND output (MIF) file.

Description

REMIND style output files are semi-colon separated CSVs with a trailing semi-colon at the end of
each row. The following structure is assumed: Columns "Model", "Scenario", "Region", "Variable",
"Unit" and an arbitrary number of year colums (convertable to numeric).

Usage

readMIF(mif)

Arguments

mif A REMIND output file (.MIF)

Examples

Not run:
dt <- readMIF("REMIND_generic_default.mif")

End(Not run)

REMIND_FinalEnergy A random REMIND FE trajectory.

Description

A random REMIND FE trajectory.

Usage

REMIND_FinalEnergy

Format

A data frame with 2011 rows and 6 columns:

year REMIND time step

region REMIND-12 region

se Secondary energy identifier

fe Final energy identifier

te Conversion technology identifier

value The data column, EJ/yr

8 REMIND_RegionMap

REMIND_GDP REMIND GDP Trajectories for ISO countries

Description

REMIND GDP Trajectories for ISO countries

Usage

REMIND_GDP

Format

A data frame with 9462 rows and 4 columns:

iso ISO3 country code

variable SSP GDP variant, this is gdp_SSP2 in this case

weight GDP in US$2010

year Year

REMIND_RegionMap The mapping between REMIND-12 regions and ISO countries

Description

The mapping between REMIND-12 regions and ISO countries

Usage

REMIND_RegionMap

Format

A data frame with 249 rows and 3 columns:

name Name of the country

iso ISO3 country code

region REMIND region name

varcalc_dt 9

varcalc_dt Execute *vertical* calculations along a given column.

Description

This assumes a *long* format with a single value column, dcasts the data.table to wide format,
executes the calulation(s), melts back to long format and returns the resulting data.table with the
additional column(s).

Usage

varcalc_dt(dt, varcol, valcol, expr, ...)

Arguments

dt data.table, long format

varcol name of the column with the variable

valcol name of the column with the value

expr vector of expressions to be handed to j in data.table, as strings, e.g., "a := b/c"

... other arguments are passed on to the data.table call where ‘expr‘ is evaluated.
Most likely you want to pass the ‘by=‘ parameter for group-by calls, see exam-
ples.

Details

Note that the data.table should have at least three columns, i.e., the variable, the value and one id
column.

Examples

mt_dt <- as.data.table(mtcars, keep.rownames = TRUE)
to long
mt1 <- melt(mt_dt, id.vars=c("rn", "cyl"))

varcalc_dt(mt1, "variable", "value", c("`spec. hp` := wt/hp", "wsum := sum(wt)"), by="cyl")

writeMIF Write a REMIND output (MIF) file.

Description

Note that these files are semi-colon separated CSVs with a trailing semi-colon at the end of each
entry. Required columns are "Model", "Scenario", "Region", "Variable", "Unit" and an arbitrary
number of year colums (should be convertable to numeric).

10 writeMIF

Usage

writeMIF(dt, destination, append = FALSE, ...)

Arguments

dt a data.table in the correct format.

destination path to the resulting MIF file

append append to an existing MIF file?

... other parameters are passed on to data.table::fwrite

Details

NAs are written to the file as "N/A".

Examples

Not run:
writeMIF(dt, "REMIND_generic_default.mif")

End(Not run)

Index

∗ datasets
REMIND_FinalEnergy, 7
REMIND_GDP, 8
REMIND_RegionMap, 8

aggregate_dt, 2
apply_weights, 3
approx_dt, 4

disaggregate_dt, 5

magpie2dt, 6

readMIF, 7
REMIND_FinalEnergy, 7
REMIND_GDP, 8
REMIND_RegionMap, 8
rmndt (rmndt-package), 2
rmndt-package, 2

varcalc_dt, 9

writeMIF, 9

11

	rmndt-package
	aggregate_dt
	apply_weights
	approx_dt
	disaggregate_dt
	magpie2dt
	readMIF
	REMIND_FinalEnergy
	REMIND_GDP
	REMIND_RegionMap
	varcalc_dt
	writeMIF
	Index

